|
SIGMA 2 (2006), 019, 10 pages nlin.SI/0602010
https://doi.org/10.3842/SIGMA.2006.019
Eigenvectors of Open Bazhanov-Stroganov Quantum Chain
Nikolai Iorgov
Bogolyubov Institute for Theoretical Physics, 14b Metrolohichna Str., Kyiv, 03143 Ukraine
Received November 29, 2005, in final form January 30, 2006; Published online February 04, 2006
Abstract
In this contribution we give an explicit formula for the
eigenvectors of Hamiltonians of open Bazhanov-Stroganov quantum
chain. The Hamiltonians of this quantum chain is defined by the
generation polynomial An(λ) which is upper-left matrix
element of monodromy matrix built from the cyclic
L-operators. The formulas for the eigenvectors are derived using
iterative procedure by Kharchev and Lebedev and given in terms of
wp(s)-function which is a root of unity analogue of
Γq-function.
Key words:
quantum integrable systems; Bazhanov-Stroganov quantum chain.
pdf (234 kb)
ps (174 kb)
tex (13 kb)
References
- Bazhanov V.V., Stroganov Yu.G., Chiral Potts model as a descendant
of the six-vertex model, J. Statist. Phys., 1990, V.59,
799-817.
- Korepanov I.G., Hidden symmetries in the 6-vertex model,
Chelyabinsk Polytechnical Inst., VINITI No. 1472-V87, 1987 (in Russian).
Korepanov I.G., Hidden symmetries in the 6-vertex model
of statistical physics, Zap. Nauchn. Sem. S.-Peterburg.
Otdel. Mat. Inst. Steklov. (POMI), 1994, V.215, 163-177 (English
transl.: J. Math. Sci. (New York), 1997, V.85, 1661-1670),
hep-th/9410066.
- Baxter R.J., Superintegrable chiral Potts model:
thermodynamic properties, an "inverse" model, and a simple
associated Hamiltonian, J. Statist. Phys., 1989, V.57,
1-39.
- Baxter R.J., Bazhanov V.V., Perk J.H.H., Functional relations for
the transfer matrices of the chiral Potts model, Internat. J.
Modern Phys. B, 1990, V.4, 803-869.
- Baxter R.J., Chiral Potts model: eigenvalues of
the transfer matrix, Phys. Lett. A, 1990, V.146, 110-114.
- Baxter R.J., Derivation of the order parameter
of the chiral Potts model, Phys. Rev. Lett., 2005, V.94,
130602, 3 pages, cond-mat/0501227.
- Kharchev S., Lebedev D.,
Eigenfunctions of GL(N,R) Toda chain: the
Mellin-Barnes representation, JETP Lett., 2000, V.71,
235-238, hep-th/0004065.
- Sklyanin E.K., Quantum inverse scattering method. Selected topics,
in Nankai Lectures in Mathematical Physics "Quantum Group and
Quantum Integrable Systems", Editor Mo-Lin Ge,
Singapore, World Scientific, 1992, 63-97.
- Kharchev S., Lebedev D., Semenov-Tian-Shansky M.,
Unitary representations of Uq(sl(2,R)), the modular double,
and the multiparticle q-deformed Toda chains,
Comm. Math. Phys., 2002, V.225, N 3, 573-609, hep-th/0102180.
- Iorgov N., Shadura V., Wave functions of the Toda chain
with boundary interaction, Theoret. and Math. Phys., 2005,
V.142, N 2, 289-305, nonlin.SI/0411002.
- von Gehlen G., Iorgov N., Pakuliak S.,
Shadura V., Baxter-Bazhanov-Stoganov model: separation of
variables and Baxter equation, in preparation.
- Bugrij A.I., Iorgov N.Z., Shadura V.N.,
Alternative method of calculating the eigenvalues of the transfer
matrix of the t2 model for N=2, JETP Lett., 2005,
V.82, 311-315.
- Lisovyy O., Transfer matrix eigenvectors of the
Baxter-Bazhanov-Stroganov t2-model for N=2,
J. Phys. A: Math. Gen., 2006, V.39, to appear, nlin.SI/0512026.
- Tarasov V.O., Cyclic monodromy matrices for the R-matrix of the
six-vertex model and the chiral Potts model with fixed spin
boundary conditions, Internat. J. Modern Phys. A Suppl.,
1992, V.7, 963-975.
- Pakuliak S., Sergeev S., Quantum relativistic Toda chain at root
of unity: isospectrality, modified Q-operator and functional
Bethe ansatz, Int. J. Math. Math. Sci., 2002, V.31,
513-554, nlin.SI/0205037.
- von Gehlen G., Pakuliak S., Sergeev S., The Bazhanov-Stroganov model
from 3D approach, J. Phys. A: Math. Gen., 2005, V.38, 7269-7298,
nlin.SI/0505019.
- Bazhanov V.V., Baxter R.J.,
Star-triangle relation for a three dimensional model, J.
Statist. Phys., 1993, V.71, 839-864, hep-th/9212050.
|
|