|
SIGMA 2 (2006), 028, 11 pages math-ph/0602065
https://doi.org/10.3842/SIGMA.2006.028
Application of the Gel'fand Matrix Method to the Missing Label Problem in Classical Kinematical Lie Algebras
Rutwig Campoamor-Stursberg
Departamento Geometría y Topología, Fac. CC. Matemáticas U.C.M.,
Plaza de Ciencias 3, E-28040 Madrid, Spain
Received November 06, 2005, in final form February 14, 2006; Published online February 28, 2006
Abstract
We briefly review a matrix based method to compute the
Casimir operators of Lie algebras, mainly certain type of
contractions of simple Lie algebras. The versatility of the method
is illustrated by constructing matrices whose characteristic
polynomials provide the invariants of the kinematical algebras in
(3+1)-dimensions. Moreover it is shown, also for kinematical
algebras, how some reductions on these matrices are useful for
determining the missing operators in the missing label problem (MLP).
Key words:
Casimir operator; characteristic polynomial; Lie algebra; missing label; kinematical group.
pdf (231 kb)
ps (176 kb)
tex (14 kb)
References
- Gel'fand I.M., The center of an infinitesimal group ring, Mat. Sbornik, 1950, V.26, 103-112.
- Perelomov A.M., Popov V.S., Casimir operators for
semisimple Lie groups, Izv. Akad. Nauk SSSR Ser. Mat., 1968,
V.32, 1368-1390.
- Barannik L.F., Fushchich W.I., Casimir operators
for the generalized Poincaré and Galilei groups, in Proceedings
of the Third International Seminar "Group Theoretical Methods in
Physics" (May 22-24, 1985, Yurmala), Moscow, Nauka, 1986,
176-183.
- Patera J., Sharp R.T., Winternitz P., Zassenhaus H.,
Continuous subgroups of physics III. The de Sitter groups, J.
Math. Phys., 1977, V.18, 2259-2288.
- Campoamor-Stursberg R., A new matrix method for the Casimir operators of the Lie algebras
wsp(N,R) and Isp(2N,R), J. Phys. A: Math. Gen., 2005, V.38,
4187-4208.
- Campoamor-Stursberg R., Über die Struktur der Darstellungen komplexer halbeinfacher Lie-Algebren,
die mit einer Heisenberg-Algebra verträglich sind, Acta
Phys. Polon. B, 2005, V.36, 2869-2886.
- Quesne C., Casimir operators of semidirect sum Lie
algebras, J. Phys. A: Math. Gen., 1988, V.21, L321-L324.
- Campoamor-Stursberg R., Intrinsic formulae for the Casimir operators of semidirect products
of the exceptional Lie algebra G2 and a Heisenberg Lie algebra,
J. Phys. A: Math. Gen., 2004, V.37, 9451-9466.
- Iwahori N., On real irreducible representations of Lie algebras,
Nagoya Math. J., 1959, V.14, 59-83.
- Bacry H., Lévy-Leblond J.M., Possible kinematics, J. Math. Phys., 1968, V.9,
1605-1614.
- Lôhmus J., Tammelo R., Contractions and
deformations of space-time algebras I, Hadronic J., 1997,
V.20, 361-416.
- Gromov N.A., Contractions and analytic continuations of the classical groups.
A unified approach, Syktyvkar, Akad. Nauk SSSR Ural. Otdel.,
1990 (in Russian).
- Herranz F.J., Santander M., Casimir invariants for
the complete family of quasisimple orthogonal Lie algebras,
J. Phys. A: Math. Gen, 1997, V.30, 5411-5426, physics/9702032.
- Sharp R.T., Internal-labelling operators, J.
Math. Phys., 1975, V.16, 2050-2053.
- Peccia A., Sharp R.T., Number of independent missing label operators,
J. Math. Phys., 1976, V.17, 1313-1314.
- Campoamor-Stursberg R., The structure of the invariants of perfect Lie algebras,
J. Phys. A: Math. Gen., 2003, V.36, 6709-6723.
- Winternitz P., Izmest'ev A.A., Pogosyan G.S.,
Sissakian A.N., Contractions of Lie algebras and separation of
variables, Fiz. Elementar. Chastits i Atom. Yadra, 2001,
V.32, 84-87.
|
|