|
SIGMA 2 (2006), 029, 12 pages math-ph/0602066
https://doi.org/10.3842/SIGMA.2006.029
Large-j Expansion Method for Two-Body Dirac Equation
Askold Duviryak
Institute for Condensed Matter Physics of National Academy of Sciences of Ukraine,
1 Svientsitskii Str., Lviv, 79011 Ukraine
Received December 01, 2005, in final form February 15, 2006; Published online February 28, 2006
Abstract
By using symmetry properties, the two-body Dirac
equation in coordinate representation is reduced to the coupled
pair of radial second-order differential equations. Then the
large-j expansion technique is used to solve a bound state
problem. Linear-plus-Coulomb potentials of different spin
structure are examined in order to describe the asymptotic
degeneracy and fine splitting of light meson spectra.
Key words:
Breit equation, two body Dirac equation, large-N expansion, Regge trajectories.
pdf (248 kb)
ps (166 kb)
tex (17 kb)
References
- Breit G., The effect of retardation on the interaction of two
electrons, Phys. Rev., 1929, V.34, 553-573.
- Barut A.O., Komy S., Derivation of nonperturbative reativistic
two-body equation from the action principle in quantum
electrodynamics, Fortschr. Phys., 1985, V.33, 309-318.
- Barut A.O., Ünal N., A new approach to bound-state quantum
electrodynamics, Phys. A, 1987, V.142, 467-487.
- Grandy W.T.Jr., Relativistic quantum mechanics of leptons and
fields, Dordrecht - Boston - London, Kluwer Academic
Publishers, 1991.
- Darewych J.W.. Di Leo L., Two-fermion Dirac-like eigenstates of
the Coulomb QED Hamiltonian, J. Phys. A: Math. Gen., 1996,
V.29,
6817-6841.
- Darewych J.W., Few-particle eigenstates in the Yukawa model,
Condensed Matter Physics, 1998, V.1, N 3(15), 593-604.
- Darewych J.W., Duviryak A., Exact few-particle eigenstates in
partially reduced QED, Phys. Rev. A, 2002, V.66, 032102, 20
pages, nucl-th/0204006.
- Duviryak A., Darewych J.W., Variational wave equations of two
fermions interacting via scalar, pseudoscalar, vector,
pseudovector and tensor fields, Cent. Eur. J. Phys., 2005,
V.3, N 3, 1-17.
- Fushchich W.I., Nikitin A.G., On the new constants of motion for
two- and three-particle equations, J. Phys. A: Math. Gen.,
1990, V.23, L533-L535.
- Nikitin A.G., Fushchich W.I., Non-Lie integrals of the motion for
particles of arbitrary spin and for systems of interacting
particles, Teor. Mat. Fiz., 1991, V.88, 406-515 (English
transl.: Theor. Math. Phys., 1991, V.88, 960-967).
- Simenog I.V., Turovsky A.I., A relativistic model of the
two-nucleon problem with direct interaction, Ukraïn.
Fiz. Zh., 2001, V.46, 391-401 (in Ukrainian).
- Simenog I.V., Turovsky A.I., The model of deuteron in Dirac-Breit
approach with direct interaction, J. Phys. Studies, 2004,
V.8, 23-34 (in Ukrainian).
- Krolikowski W., Relativistic radial equations for 2 spin-1/2
particles with a static interaction, Acta Phys. Polon. B,
1976, V.7, 485-496.
- Childers R.W., Effective Hamiltonians for generalized Breit
interactions in QCD, Phys. Rev. D, 1987, V.36, 606-614.
- Brayshaw D.D., Relativistic description of quarkonium, Phys.
Rev. D, 1987, V.36, 1465-1478.
- Tsibidis G.D., Quark-antiquark bound states and the Breit
equation, Acta Phys. Polon. B, 2004, V.35, 2329-2366,
hep-ph/0007143.
- Khelashvili A.A., Radial quasipotential equation for a fermion and
antifermion and infinitely rising central potentials,
Teor. Mat. Fiz.,
1982, V.51, 201-210 (English transl.: Theor. Math. Phys., 1982, V.51,
447-453).
- Crater H.W., Wong C.W. and Wong C.-Y., Singularity-free Breit
equation from constraint two-body Dirac equations, Internat.
J. Modern Phys. E, 1996, V.5, 589-615, hep-ph/9603402.
- Mlodinov L.D., Shatz M.P., Solving the Schrödinger equation with
use of 1/N perturbation theory, J. Math. Phys., 1984,
V.25, 943-950.
- Imbo T., Pagnamenta A. And Sukhatme U., Energy eigenstates of
spherically symmetric potentials using the shifted 1/N
expansion, Phys. Rev. D, 1984, V.29, 1669-1681.
- Vakarchuk I.O., The 1/N-expansion in quantum mechanics.
High-order approximations, J. Phys. Studies 2002, V.6,
46-54.
- Mustafa O., Barakat T., Nonrelativistic shifted-l expansion
technique for three- and two-dimensional Schrödinger equation,
Commun. Theor. Phys., 1997, V.28,
257-264, math-ph/9910040.
- Mustafa O., Barakat T., Relativistic shifted-l expansion technique
for Dirac and Klein-Gordon equations, Commun. Theor. Phys.,
1998, V.29, 587-594, math-ph/9910039.
- Todorov I.T., Quasipotential equation correspondong to the
relativistic eiconal approximation, Phys. Rev. D, 1971, V.3,
2351-2356.
- Rizov V.A., Sazdian H., Todorov I.T., On the relativistic quantum
mechanics of two interacting spinless particles, Ann. of
Phys. (NY), 1985, V.165, 59-97.
- Duviryak A., Heuristic models of two-fermion relativistic systems
with field-type interaction, J. Phys. G, 2002, V.28,
2795-2809, nucl-th/0206048.
- Lucha W., Schoberl F.F., Gromes D., Bound states of quarks,
Phys. Rep., 1991, V.200, Issue 4, 127-240.
- Eddington A.S., The charge of an electron, R. Soc. Lond.
Proc. Ser. A, 1929, V.122, N 789, 358-369.
- Gaunt J.A., The triplets of Helium,
Philos. Trans. R. Soc. Lond. Ser. A, 1929, V.228, 151-196.
Gaunt J.A., The triplets of Helium, R. Soc. Lond. Proc. Ser. A, 1929, V.122,
N 790, 513-532.
- Salpeter E.E., Mass corrections to the fine structure of
hydrogen-like atoms, Phys. Rev., 1952, V.87, 328-343.
- Faustov R.N., The proton structure and hyperfine splitting of
hydrogen energy levels, Nucl. Phys., 1966, V.75, 669-681.
- Khelashvili A.A., Quasipotential equation for the system of two
particles with spin 1/2, Communications of the Joint
Institute for Nuclear Physics, P2-4327, Dubna, 1969 (in
Russian).
- Long C., Robson D., Bound states of a relativistic quark
confined by a vector potential, Phys. Rev. D, 1983, V.27,
644-646.
- Baric N., Jena S.N., Lorentz structure vs relativistic consistency
of an effective power-law potential model for quark-antiquark
systems, Phys. Rev. D, 1982, V.26, 2420-2429.
- Haysak I., Lengyel V., Shpenik A., Challupka S., Salak M., Quark masses in the relativistic
analytic model, Ukraïn. Fiz. Zh., 1996, V.41, 370-372
(in Ukrainian).
|
|