|
SIGMA 2 (2006), 038, 14 pages math-ph/0603071
https://doi.org/10.3842/SIGMA.2006.038
On the Generalized Maxwell-Bloch Equations
Pavle Saksida
Department of Mathematics, Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
Received December 01, 2005, in final form March 05, 2006; Published online March 27, 2006
Abstract
A new Hamiltonian structure of the Maxwell-Bloch
equations is described. In this setting the Maxwell-Bloch
equations appear as a member of a family of generalized
Maxwell-Bloch systems. The family is parameterized by compact
semi-simple Lie groups, the original Maxwell-Bloch system being
the member corresponding to SU(2). The Hamiltonian structure is
then used in the construction of a new family of symmetries and
the associated conserved quantities of the Maxwell-Bloch
equations.
Key words:
Maxwell-Bloch equations; Hamiltonian structures; symmetries; conserved quantities.
pdf (238 kb)
ps (179 kb)
tex (19 kb)
References
- Reyman A.G., Semenov-Tian-Shansky M.A.,
Reduction of Hamiltonian systems, affine Lie algebras
and Lax equations I, Invent. Math., 1979, V.54, 81-100.
- Reyman A.G., Semenov-Tian-Shansky M.A.,
Integrable systems II, in Encyclopaedia of Mathematical
Sciences, Vol. 16, Editors V.I. Arnold and S.P. Novikov,
Berlin, Springer, 1994, 116-259.
- Saksida P., Nahm's equations and generalizations
of the Neumann system, Proc. Lond. Math. Soc., 1999, V.78,
701-720.
- Novikov S.P., The Hamiltonian formalism and multivalued
analogue of Morse theory, Uspekhi Mat. Nauk, 1982, V.37,
3-49 (in Russian).
- Marsden J.E., Lectures on mechanics,
London Mathematical Society Lecture Note Series, Vol.174,
Cambridge, Cambridge University Press, 1992.
- Marsden J.E., Ratiu T.S., Introduction to mechanics
and symmetry, New York, Springer, 1994.
- Saksida P., Maxwell-Bloch equations, C. Neumann systems and Kaluza-Klein
theory, J. Phys. A: Math. Gen., 2005, V.38, 10321-10344.
- Kostant B., Quantization and unitary representations, in
Lectures in Modern Analysis and Applications III. Lecture
Notes in Math., Vol.179, Editor C.T. Taam, Berlin, Springer,
1970, 87-208.
- Park Q-Han, Shin H.J., Complex sine-Gordon equation in coherent
optical pulse propagation, J. Korean Phys. Soc., 1997,
V.30, 336-340, solv-int/9904007.
- Park Q-Han, Shin H.J.,
Field theory for coherent optical pulse propagation, Phys.
Rev. A, 1998, V.57, 4621-4642, solv-int/9709002.
- Abraham R., Marsden J.E., Foundations of
Mechanics, 2nd ed., Reading MA, Benjamin-Cummings, 1978.
- Lamb G.L., Phase variation in coherent-optical-pulse propagation,
Phys. Rev. Lett., 1973, V.31, 196-199.
- Lamb G.L., Coherent-optical-pulse propagation as an inverse problem,
Phys. Rev. A, 1974, V.9, 422-430.
- Caudrey P.J., Eilbeck J.C., Gibbon J.D.,
An N-soliton solution of a nonlinear optics equation derived by
inverse method, Lett. Nuovo Cimento, 1973, V.8, 773-779.
- Gabitov I.R., Zakharov V.E., Mikhailov A.V.,
The Maxwell-Bloch equation and the method of the inverse
scattering problem, Teoret. Mat. Fiz., 1985, V.63, 11-31
(in Russian).
- Saksida P., Neumann system, spherical pendulum and
magnetic fields, J. Phys. A: Math. Gen., 2002, V.35,
5237-5253.
- Saksida P., Integrable anharmonic oscillators on spheres
and hyperbolic spaces, Nonlinearity, 2001, V.14, 977-994.
- Holm D., Kovacic G., Homoclinic chaos in a laser-matter
system, Phys. D, 1992, V.56, 270-300.
- Naudts J., Kuna M., Special solutions of nonlinear
von Neumann equations, math-ph/0506020.
- Czachor M., Kuna M., Leble S.B., Naudts J., Nonlinear von Neumann-type
equations, in Trends in Quantum Mechanics (1998, Goslar), River
Edge, NJ, World Sci. Publishing, 2000, 209-226, quant-ph/9904110.
- Nambu Y., Generalized Hamiltonian dynamics, Phys. Rev. D,
1973, V.7, 2405-2412.
|
|