|
SIGMA 2 (2006), 040, 11 pages math-ph/0604021
https://doi.org/10.3842/SIGMA.2006.040
Nonclassical Approximate Symmetries of Evolution Equations with a Small Parameter
Svetlana Kordyukova
Department of Mathematics, Ufa State Aviation Technical University, 12 K. Marx Str., Ufa, 450000 Russia
Received November 30, 2005, in final form March 17, 2006; Published online April 10, 2006
Abstract
We introduce a method of approximate nonclassical Lie-Bäcklund symmetries for
partial differential equations with a small parameter and discuss applications
of this method to finding of approximate solutions both
integrable and nonintegrable equations.
Key words:
nonclassical Lie-Bäcklund symmetries; approximate symmetry; conditional-invariant solution.
pdf (189 kb)
ps (145 kb)
tex (10 kb)
References
- Baikov V.A., Gazizov R.K., Ibragimov N.Kh., Perturbation methods
in group analysis, Current Problems in Mathematics. Newest
Results, Vol. 34, Moscow, VINITI, 1989, 85-147 (English transl.:
J. Soviet Math., 1991, V.55, 1450-1490).
- Bluman G.W., Cole J.D., The
general similarity solutions of the heat equation, J. Math.
Mech., 1969, V.18, 1025-1042.
- Olver P.J., Rosenau P., The construction of special
solutions to partial differential equation, Phys. Lett. A,
1986, V.114, 107-112.
- Clarkson P.A., Kruskal M., New similarity reductions
of the Boussinesq equation, J. Math. Phys., 1989, V.30,
2201-2213.
- Fushchych W.I., Shtelen W.M., Serov N.I.,
Symmetry analysis and exact solutions of nonlinear equations of
mathematical physics,
Kyiv, Naukova Dumka, 1989 (English transl.: Dordrecht, Kluwer, 1993).
- Fokas A.S., Liu Q.M., Generalized conditional
symmetries and exact solutions of non-integrable equations,
Teor. Mat. Fiz., 1994, V.99, 263-277 (English transl.:
Theor. Math. Phys., 1994, V.99, 571-582).
- Zhdanov R.Z., Conditional Lie-Bäcklund symmetry and reduction
of evolution equations, J. Phys. A: Math. Gen., 1995, V.28,
3841-3850.
- Mahomed F.M., Qu C.,
Approximate conditional symmetries for partial differential
equations, J. Phys. A: Math. Gen., 2000, V.33, 343-356.
- Kara A.F., Mahomed F.M., Qu C., Approximate
potential symmetries for partial differential equations,
J. Phys. A: Math. Gen., 2000, V.33, 6601-6613.
- Olver P.J., Vorob'ev E.M., Nonclassical and conditional
symmetries, in CRC Handbook of Lie Group Analysis of
Differential Equations, Vol. 3, Editor N.H. Ibragimov, Boca
Raton, Florida, CRC Press, 1996, 291-328.
- Sokolov V.V., Shabat A.B., Classification of integrable
evolution equations, in Mathematical Physics Reviews,
Vol. 4, Soviet Sci. Rev. Sect. C Math. Phys. Rev., 4, Chur,
Harwood Academic Publ., 1984, 221-280.
- Baikov V.A., Kordyukova S.A., Approximate symmetries of the Boussinesq
equation, Quaest. Math., 2003, V.26, 1-14.
- Baikov V.A., Gazizov R.K., Ibragimov N.Kh., Approximate transformation groups and
deformations of symmetry Lie algebras, Chapter 2, in CRC Handbook
of Lie Group Analysis of Differential Equation, Vol. 3, Editor
N.H. Ibragimov, Boca Raton, Florida, CRC Press, 1996.
|
|