|
SIGMA 2 (2006), 041, 5 pages math.AP/0604278
https://doi.org/10.3842/SIGMA.2006.041
Dirichlet and Neumann Problems for String Equation, Poncelet Problem and Pell-Abel Equation
Vladimir P. Burskii a and Alexei S. Zhedanov b
a) Institute of Applied Mathematics and Mechanics NASU, Donetsk, 83114 Ukraine
b) Donetsk Institute for Physics and Technology NASU, Donetsk, 83114 Ukraine
Received November 23, 2005, in final form March 20, 2006; Published online April 12, 2006
Abstract
We consider conditions for uniqueness of the solution of the Dirichlet or the Neumann problem for 2-dimensional wave
equation inside of bi-quadratic algebraic curve. We show that
the solution is non-trivial if and only if corresponding
Poncelet problem for two conics associated with the curve has periodic
trajectory and if and only if corresponding Pell-Abel equation has a solution.
Key words:
Dirichlet problem; Neumann problem; string equation Poncelet problem; Pell-Abel equation.
pdf (155 kb)
ps (126 kb)
tex (9 kb)
References
- Baxter R., Exactly solvable models in statistical
mechanics, London, Academic Press, 1982.
- Berger M., Géométrie, CEDIC, Paris, 1978.
- Burskii V.P., Investigation methods of boundary
value problems for general differential equations, Kyiv, Naukova
Dumka, 2002 (in Russian).
- Burskii V.P., Zhedanov A.S., The Dirichlet and
the Poncelet problems, RIAM Symposium No.16ME-S1 "Physics and
Mathematical Structures of Nonlinear Waves" (November 15-17,
2004, Kyushu University, Kasuga, Fukuoka, Japan), 2004, 22-26,
see
here.
- Francoise J.P., Ragnisco O., An iterative process on
quartics and integrable symplectic maps, in Symmetries and
Integrability of Difference equations (1996, Canterbury),
Editors P.A. Clarkson and F.W. Nijhoff, London Math. Soc.
Lecture Note Ser., Vol. 255, Cambridge, Cambridge Univ. Press,
1999, 56-63.
- Granovskii Ya.I., Zhedanov A.S., Integrability of the
classical XY chain, Pis'ma Zh. Eksper. Teoret. Fiz., 1986,
V.44, 237-239 (English transl.: JETP Lett., 1986, V.44,
N 5, 304-307).
- Griffiths P., Harris J., On a Cayley's explicit
solution to Poncelet's porism, Enseign. Math. 2, 1978, V.24,
31-40.
- Iatrou A., Roberts J.A.G., Integrable mappings of
the plane preserving biquadratic invariant curves II,
Nonlinearity, 2002, V.15, 459-489.
- John F., The Dirichlet problem for a hyperbolic
equation, Amer. J. Math., 1941, V.63, 141-154.
- Malyshev V.A., Abel equation, Algebra
i Analiz, 2001, V.13, N 6, 1-55 (English transl.: St.
Petersburg Math. J., 2001, V.13, N 6, 893-938).
- Malyshev V.A., Periods of quadratic irrationalities, and torsion of
elliptic curves, Algebra i Analiz, 2003, V.15, N 4, 177-203
(English transl.: St. Petersburg Math. J., 2004, V.15, N 4,
587-602).
- Sodin M.L., Yuditskii P.M., Functions least
deviating from zero on closed subsets of the real axis,
Algebra i Analiz, 1992, V.4, N 2, 1-61 (English transl.:
St. Petersburg Math. J., 1993, V.4, N 2, 201-249).
- Veselov A.P., Integrable systems with discrete time and
difference operators, Funktsional. Anal. i Prilozhen.,
1988, V.22, 1-13 (English transl.: Funct. Anal. Appl.,
1988, V.22, N 2, 83-93).
- Whittacker E.T., Watson G.N., A course of modern analysis,
Cambridge, 1927.
|
|