|
SIGMA 2 (2006), 052, 20 pages physics/0605106
https://doi.org/10.3842/SIGMA.2006.052
Consequences of Symmetries on the Analysis and Construction of Turbulence Models
Dina Razafindralandy and Aziz Hamdouni
LEPTAB, Avenue Michel Crépeau, 17042 La Rochelle Cedex 01, France
Received October 28, 2005, in final form May 02, 2006; Published online May 12, 2006
Abstract
Since they represent fundamental physical properties in
turbulence (conservation laws, wall laws, Kolmogorov energy
spectrum, ...), symmetries are used to analyse common turbulence
models. A class of symmetry preserving turbulence models is
proposed. This class is refined such that the models respect the
second law of thermodynamics. Finally, an example of model
belonging to the class is numerically tested.
Key words:
turbulence; large-eddy simulation; Lie symmetries; Noether's theorem; thermodynamics.
pdf (305 kb)
ps (728 kb)
tex (576 kb)
References
- Atherton R.W., Homsy G.M.,
On the existence and formulation of variational principles for
nonlinear differential equations, Stud. Appl. Math., 1975,
V.54, 31-60.
- Berselli L.C., Grisanti C.R.,
On the consistency of the rational large eddy simulation model,
Comput. Vis. Sci., 2004, V.6, N 2-3, 75-82.
- Bytev V.O., Group-theoretical properties of the Navier-Stokes
equations, Numerical Methods of Continuum Mechanics, 1972,
V.3, N 3, 13-17 (in Russian).
- Cannone M., Karch G., About the regularized Navier-Stokes
equations, J. Math. Fluid Mech., 2005, V.7, 1-28,
math.AP/0305097.
- Cantwell B.J.,
Similarity transformations for the two-dimensional, unsteady,
stream-function equation,
J. Fluid Mech., 1978, V.85, 257-271.
- Chen Q., Jiang Y., Béhein C., Su M., Particulate dispersion and
transportation in buildings with large
eddy simulation,
Technical Report, Massachusetts Institute of Technology, 2001.
- Danilov Yu.A., Group properties of the Maxwell and Navier-Stokes
equations, Preprint, Khurchatov Inst. Nucl. Energy, Acad. Sci.
USSR, 1967 (in Russian).
- Fushchych W.I., Popowych R.O., Symmetry reduction and exact
solutions of the Navier-Stokes
equations,
J. Nonlinear Math. Phys., 1994, V.1, 75-113, 156-188,
math-ph/0207016.
- Ibragimov N.H., Ünal G.,
Equivalence transformations of Navier-Stokes equations,
Istanbul Tek. Üniv. Bül., 1994, V.47, 203-207.
- Ibragimov N.H., Kolsrud T.,
Lagrangian approach to evolution equations: symmetries and
conservation laws, Nonlinear Dynam., 2004, V.36, 29-40.
- Iliescu T., John V., Layton W., Convergence of finite element
approximations of large eddy motion, Numer. Methods Partial
Differential Equations, 2002, V.18, 689-710.
- Iliescu T., John V., Layton W.J., Matthies G., Tobiska L., A
numerical study of a class of LES models, Int. J. Comput.
Fluid Dyn., 2003, V.17, 75-85.
- Kim P., Olver P.J., Geometric integration via multi-space,
Regul. Chaotic Dyn., 2004, V.9, N 3, 213-226.
- Lilly D., A proposed modification of the Germano subgrid-scale
closure
method, Phys. Fluids, 1992, V.4, 633-635.
- Lindgren B., Österlund J., Johansson A.,
Evaluation of scaling laws derived from Lie group symmetry methods
in zero-pressure-gradient turbulent boundary layers,
J. Fluid Mech., 2004, V.502, 127-152.
- Méais O., Lesieur M., Spectral large-eddy simulation of
isotropic and stably stratified
turbulence,
J. Fluid Mech., 1992, V.256, 157-194.
- Nielsen P., Restivo A., Whitelaw J., The velocity characteristics
of ventilated rooms, J. Fluids Engrg., 1978, V.100,
291-298.
- Oberlack M., Symmetries, invariance and scaling-laws in
inhomogeneous turbulent
shear flows,
Flow, Turbulence and Combustion, 1999, V.62, 111-135.
- Oberlack M., A unified approach for symmetries in plane parallel
turbulent shear flows,
J. Fluid Mech., 2001, V.427, 299-328.
- Olver P.,
Geometric foundations of numerical algorithms and symmetry,
Appl. Algebra Engrg. Comm. Comput., 2001, V.11, 417-436.
- Razafindralandy D., Contribution à l'étude mathématique et
numérique de la
simulation des grandes échelles,
PHD Thesis, Université de La Rochelle, 2005.
- Sagaut P., Large eddy simulation for incompressible flows. An
introduction,
Scientific Computation, Springer, 2004.
- Saveliev V., Gorokhovski M., Group-theoretical model of developed
turbulence and renormalization of the Navier-Stokes equation,
Phys. Rev. E, 2005, V.72, 016302, 6 pages.
- Ünal G., Application of equivalence transformations to inertial
subrange of
turbulence,
Lie Groups Appl., 1994, V.1, 232-240.
- Ünal G., Constitutive equation of turbulence and the Lie
symmetries of
Navier-Stokes equations,
in Modern Group Analysis VII, Editors N.H. Ibragimov,
K. Razi Naqvi and E. Straume, Trondheim, Mars Publishers, 1997,
317-323.
- Winckelmans G.S., Wray A., Vasilyev O.V., Jeanmart H.,
Explicit filtering large-eddy simulation using the
tensor-diffusivity
model supplemented by a dynamic Smagorinsky term,
Phys. Fluids, 2001, V.13, 1385-1403.
|
|