|
SIGMA 2 (2006), 053, 8 pages cond-mat/0605364
https://doi.org/10.3842/SIGMA.2006.053
On Regularized Solution for BBGKY Hierarchy of One-Dimensional Infinite System
Tatiana V. Ryabukha
Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivs'ka Str., Kyiv-4, 01601 Ukraine
Received October 31, 2005, in final form April 26, 2006; Published online May 14, 2006
Abstract
We construct a regularized cumulant (semi-invariant)
representation of a solution of the initial value problem for the BBGKY hierarchy
for a one-dimensional infinite system of hard spheres interacting via
a short-range potential. An existence theorem is proved
for the initial data from the space of sequences of bounded functions.
Key words:
BBGKY hierarchy; cumulant; regularized solution.
pdf (219 kb)
ps (160 kb)
tex (12 kb)
References
- Petrina D.Ya., Gerasimenko V.I., Malyshev P.V.,
Mathematical foundations of classical statistical mechanics.
Continuous systems, 2nd ed., London - New York, Taylor & Francis Inc., 2002.
- Cercignani C., Gerasimenko V.I., Petrina D.Ya.,
Many-particle dynamics and kinetic equations,
Kluwer Acad. Publ., 1997.
- Cercignani C., Illner R., Pulvirenti M.,
The mathematical theory of dilute gases,
Applied Mathematical Sciences, Vol. 106,
New York, Springer, 1994.
- Spohn H.,
Large scale dynamics of interacting particles, Springer, 1991.
- Petrina D.Ya.,
Mathematical description of the evolution of infinite
systems of classical statistical physics. I. Locally perturbed one-dimensional systems,
Teoret. Mat. Fiz., V.38, 1979, 230-262 (in Russian).
- Petrina D.Ya., Gerasimenko V.I.,
Mathematical description of the evolution of the state of infinite systems of classical statistical mechanics,
Uspekhi Mat. Nauk, 1983, V.38, 3-58 (in Russian).
- Gerasimenko V.I., Ryabukha T.V.,
Dual nonequilibrium cluster expansions,
Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 2003, N 3, 16-22 (in Ukrainian).
- Gerasimenko V.I., Ryabukha T.V., Stashenko M.O.,
On the BBGKY hierarchy solutions for many-particle systems with different symmetry properties,
in Proceedings of Fifth International Conference "Symmetry in
Nonlinear Mathematical Physics" (June 23-29, 2003, Kyiv),
Editors A.G. Nikitin, V.M. Boyko, R.O. Popovych and
I.A. Yehorchenko, Proceedings of Institute of Mathematics,
Kyiv, 2004, V.50, Part 3, 1308-1313.
- Gerasimenko V.I., Ryabukha T.V.,
Cumulant representation of solutions of the Bogolyubov chains of equations,
Ukrain. Mat. Zh., 2002, V.54, 1313-1328
(English transl.: Ukrainian Math. J.,
2002, V.54, 1583-1601).
- Ruelle D.,
Statistical mechanics. Rigorous results,
New York - Amsterdam, W.A. Benjiamin Inc., 1969.
- Cohen E.G.D.,
Cluster expansions and the hierarchy. I. Non-equilibrium distribution functions,
Physica, 1962, V.28, 1045-1059.
- Green H.S., Piccirelli R.A.,
Basis of the functional assumption in the theory of the Boltzmann equation,
Phys. Rev. (2), 1963, V.132, 1388-1410.
- Reed M., Simon B.,
Methods of modern mathematical physics. Vol. 1: Functional analysis,
New York - London, Academic Press, 1972.
- Kaniadakis G.,
BBGKY hierarchy underlying many-particle quantum mechanics,
Phys. Lett. A, 2003, V.310, 377-382, quant-ph/0303159.
- Tarasov V.E.,
Fractional systems and fractional Bogoliubov hierarchy equations,
Phys. Rev. E, 2005, V.71, 011102, 12 pages, cond-mat/0505720.
- Illner R., Pulvirenti M.,
Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum,
Comm. Math. Phys., 1986, V.105, 189-203.
- Illner R., Pulvirenti M.,
A derivation of the BBGKY-hierarchy for hard sphere particle systems,
Transport Theory Statist. Phys., 1987, V.16, 997-1012.
|
|