|
SIGMA 2 (2006), 056, 23 pages hep-th/0510268
https://doi.org/10.3842/SIGMA.2006.056
Extension of the Poincaré Symmetry and Its Field Theoretical Implementation
Adrian Tanasa
Laboratoire MIA, Faculté de Sciences et Techniques, Université de Haute Alsace,
4 rue des Frères Lumière, 68093 Mulhouse Cedex, France
Received October 31, 2005, in final form April 28, 2006; Published online May 29, 2006
Abstract
We define a new algebraic extension of the Poincaré symmetry;
this algebra is used to implement a field theoretical model.
Free Lagrangians are explicitly constructed; several discussions
regarding degrees of freedom, compatibility with Abelian gauge invariance etc.
are done. Finally we analyse the possibilities of interaction terms for this model.
Key words:
extensions of the Poincaré algebra; field theory; algebraic methods; Lie (super)algebras; gauge symmetry.
pdf (339 kb)
ps (224 kb)
tex (31 kb)
References
- O'Raifeartaigh L., Mass differences and Lie algebras of finite
order, Phys. Rev. Lett., 1965, V.14, 575-577.
- Coleman S., Mandula J., All possible symmetries of the S matrix,
Phys. Rev., 1967, V.159, 1251-1256.
- Lopuszanski J., An introduction to symmetry and supersymmetry in
quantum field theory, Singapore, World Scientific Publishing,
1991.
- Streater R.F., Wightman A.S., PCT, spin and statistics and all
that, New York, W.A. Benjamin, Inc., 1964.
- Haag R., Lopuszanski J.T., Sohnius M.F., All possible generators
of supersymmetries of the S matrix, Nucl. Phys. B, 1976,
V.88, 257-274.
- Rausch de Traubenberg M., Slupinski M.J., Finite-dimensional Lie
algebras of order F, J. Math. Phys., 2002, V.43,
5145-5160, hep-th/0205113.
- Rausch de Traubenberg M., Slupinski M.J., Fractional supersymmetry
and F(th) roots of representations, J. Math. Phys.,
2000, V.41, 4556-4571, hep-th/9904126.
- Mohammedi N., Moultaka G., Rausch de Traubenberg M.,
Field theoretic realizations for cubic supersymmetry,
Internat. J. Modern Phys. A, 2004, V.19, 5585-5608,
hep-th/0305172.
- Moultaka G., Rausch de Traubenberg M., Tanasa A., Cubic
supersymmetry and Abelian gauge invariance, Internat. J.
Modern Phys. A, 2005, V.20, 5779-5806, hep-th/0411198.
- Beckers J., Debergh N.,
On parasupersymmetric coherent states,
Modern Phys. Lett. A, 1989, V.4, 1209-1215.
- Beckers J., Debergh N., Poincaré invariance and quantum
parasuperfields, Internat. J. Modern Phys. A, 1993, V.8,
5041-5061.
- Rubakov V.A., Spiridonov V.P., Parasupersymmetric quantum
mechanics, Modern Phys. Lett. A, 1988, V.3, 1337-1347.
- Matheus-Valle J.L., Monteiro M.A.R., Quantum group generalization
of the classical supersymmetric point
particle, Modern Phys. Lett. A, 1992, V.7,
3023-3028.
- Durand S., Extended fractional supersymmetric quantum mechanics,
Modern Phys. Lett. A, 1993, V.8, 1795-1804, hep-th/9305130.
- de Azcàrraga J.A., Macfarlane A.J., Group theoretical
foundations of fractional supersymmetry, J. Math. Phys.,
1996, V.37, 1115-1127, hep-th/9506177.
- Fleury N., Rausch de Traubenberg M., Local fractional
supersymmetry for alternative statistics, Modern Phys.
Lett. A, 1996, V.11, 899-914, hep-th/9510108.
- Dunne R.S., Macfarlane A.J., de Azcarraga J.A., Perez Bueno J.C.,
Geometrical foundations of fractional supersymmetry,
Internat. J. Modern Phys. A, 1997, V.12, 3275-3306,
hep-th/9610087.
- Perez A., Rausch de Traubenberg M., Simon P., 2D fractional
supersymmetry for rational conformal field theory.
Application for third-integer spin states,
Nucl. Phys. B, 1996, V.482, 325-344, hep-th/9603149.
- Rausch de Traubenberg M., Simon P., 2-D fractional supersymmetry
and conformal field theory for alternative
statistics, Nucl. Phys. B, 1998, V.517, 485-505,
hep-th/9606188.
- Rausch de Traubenberg M., Slupinski M.J., Non-trivial extensions
of the 3D-Poincaré algebra and fractional
supersymmetry for anyons,
Modern Phys. Lett. A, 1997, V.12, 3051-3066, hep-th/9609203.
- Kerner R.,
Z(3) graded algebras and the cubic root of the supersymmetry
translations,
J. Math. Phys., 1992, V.33, 403-411.
- Filippov V.T., n-Lie algebras, Sibirsk. Mat. Zh., 1985, V.26, 126-140.
- Tanasa A.,
Lie subalgebras of the Weyl algebra. Lie algebras of order 3 and their
application to cubic supersymmetry,
hep-th/0509174.
- Goze M., Rausch de Traubenberg M., Tanasa A., Deformations,
contractions and classifications of Lie algebras of order 3,
math-ph/0603008.
- Sohnius M.F., Introducing supersymmetry, Phys. Rep., 1985,
V.128, 39-204.
- Grignani G., Plyushchay M., Sodano P.,
A pseudoclassical model for P,T-invariant planar fermions,
Nucl. Phys. B, 1996, V.464, 189-212, hep-th/9511072.
- Nirov K.S., Plyushchay M.S.,
P,T-invariant system of Chern-Simons fields: pseudoclassical model and
hidden symmetries,
Nucl. Phys. B, 1998, V.512, 295-319, hep-th/9803221.
- Plyushchay M.S.,
Hidden nonlinear supersymmetries in pure parabosonic systems,
Internat. J. Modern Phys. A, 2000, V.15, 3679-3698, hep-th/9903130.
- Plyushchay M.S., Rausch de Traubenberg M.,
Cubic root of Klein-Gordon equation,
Phys. Lett. B, 2000, V.477, 276-284, hep-th/0001067.
- Witten E., Lecture notes on supersymmetry, in Proc. Inter. School of Subnuclear Physics
(Erice, 1981), Editor A. Zichichi, Plenum Press, 1983, 1-64.
- Polchinski J., String theory, Cambridge University Press, 2000.
- Gomis J., Paris J., Samuel S., Antibracket, antifields and
gauge-theory quantization, Phys. Rep., 1995, V.259, 1-145,
hep-th/9412228.
- Peskin M., Schroeder D., An introduction to quantum field
theory, Perseus Books, 1980
- Horowitz G.T., Exactly soluble diffeomorphism invariant
theories, Comm. Math. Phys., 1989, V.125, 417-437.
- Horowitz G.T., Srednicki M., A quantum field theoretic
description of linking numbers and their generalization,
Comm. Math. Phys., 1990, V.130, 83-94.
- Blau M., Thompson G., Topological gauge theories of antisymmetric
tensor fields, Ann. Phys., 1991, V.205, 130-172.
- Blau M., Thompson G., Do metric independent classical actions lead
to topological field theories?, Phys. Lett. B, 1991,
V.255, 535-542.
- Rausch de Traubenberg M.,
Four dimensional cubic supersymmetry, hep-th/0312066.
- Moultaka G., Rausch de Traubenberg M., Tanasa A.,
Non-trivial extension of the Poincaré algebra for antisymmetric gauge fields,
Contribution to the XI-th International Conference "Symmetry
Methods in Physics" (June 21-24, 2004, Prague), hep-th/0407168.
- Henneaux M., Knaepen B., All consistent interactions for exterior form gauge
fields, Phys. Rev. D, 1997, V.56, 6076-6080,
hep-th/9706119.
|
|