|
SIGMA 2 (2006), 058, 10 pages math.AP/0606045
https://doi.org/10.3842/SIGMA.2006.058
A Dual Mesh Method for a Non-Local Thermistor Problem
Abderrahmane El Hachimi a, Moulay Rchid Sidi Ammi b and Delfim F.M. Torres b
a) UFR: Applied and Industrial Mathematics,
University of Chouaib Doukkali, El Jadida, Maroc
b) Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal
Received December 20, 2005, in final form May 08, 2006; Published online June 02, 2006
Abstract
We use a dual mesh numerical method to study a non-local
parabolic problem arising from the well-known thermistor problem.
Key words:
non-local thermistor problem; joule heating; box scheme method.
pdf (225 kb)
ps (367 kb)
tex (232 kb)
References
- Allegretto W., Lin Y., Zhou A.,
A box scheme for coupled systems resulting from microsensor
thermistor problems, Dynam. Contin. Discrete Impuls.
Systems, 1999, V.5, N 1-4, 209-223.
- Antontsev S.N., Chipot M.,
The thermistor problem: existence, smoothness uniqueness, blowup,
SIAM J. Math. Anal., 1994, V.25, N 4, 1128-1156.
- Cai Z.Q., On the finite volume element method,
Numer. Math., 1991, V.58, N 7, 713-735.
- Ciarlet P.G., The finite element method
for elliptic problems, Amsterdam, North-Holland, 1978.
- Chatzipantelidis P., Lazarov R.D., Thomée V.,
Error estimates for a finite volume element method for parabolic
equations in convex polygonal domains, Numer. Methods Partial
Differential Equations, 2004, V.20, Issue 5, 650-674.
- Cimatti G., On the stability of the solution
of the thermistor problem, Appl. Anal., 1999, V.73, N 3-4,
407-423.
- Cimatti G., Stability and multiplicity of solutions
for the thermistor problem, Ann. Mat. Pura Appl. (4), 2002,
V.181, N 2, 181-212.
- El Hachimi A., Sidi Ammi M.R.,
Existence of weak solutions for the thermistor problem with
degeneracy, in Proceedings of the 2002 Fez Conference on Partial
Differential Equations, Electron. J. Differ. Equ. Conf.,
2002, V.9, 127-137.
- El Hachimi A., Sidi Ammi M.R.,
Thermistor problem: a nonlocal parabolic problem, in Proceedings
of the 2004-Fez Conference on Differential Equations and
Mechanics, Electron. J. Differ. Equ. Conf., 2004, V.11,
117-128.
- El Hachimi A., Sidi Ammi M.R.,
Existence of global solution for a nonlocal parabolic problem,
Electron. J. Qual. Theory Differ. Equ., 2005, N 1, 9 pages.
- El Hachimi A., Sidi Ammi M.R.,
Semi-discretization for a non local parabolic problem, Int.
J. Math. Math. Sci., 2005, N 10, 1655-1664.
- Elliott C.M., Larsson S., A finite element model
for the time-dependent Joule heating problem, Math. Comp.,
1995, V.64, N 212, 1433-1453.
- Lacey A.A., Thermal runaway in a non-local problem
modelling Ohmic heating. I. Model derivation and some special
cases, European J. Appl. Math., 1995, V.6, N 2, 127-144.
- Lacey A.A., Thermal runaway in a non-local problem
modelling Ohmic heating. II. General proof of blow-up and
asymptotics of runaway, European J. Appl. Math., 1995, V.6,
N 3, 201-224.
- Tzanetis D.E., Blow-up of radially symmetric solutions
of a non-local problem modelling Ohmic heating, Electron. J.
Differential Equations, 2002, N 11, 26 pages.
- Xu X., Local and global existence of continuous temperature
in the electrical heating of conductors, Houston J. Math.,
1996, V.22, N 2, 435-455.
- Xu X., Existence and uniqueness for the nonstationary
problem of the electrical heating of a conductor due to the
Joule-Thomson effect, Int. J. Math. Math. Sci., 1993,
V.16, N 1, 125-138.
- Yue X.Y., Numerical analysis of nonstationary
thermistor problem, J. Comput. Math., 2004, V.12, N 3,
213-223.
|
|