Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 2 (2006), 071, 16 pages      math.CA/0610718      https://doi.org/10.3842/SIGMA.2006.071
Contribution to the Vadim Kuznetsov Memorial Issue

Generalized Ellipsoidal and Sphero-Conal Harmonics

Hans Volkmer
Department of Mathematical Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 USA

Received August 25, 2006, in final form October 20, 2006; Published online October 24, 2006

Abstract
Classical ellipsoidal and sphero-conal harmonics are polynomial solutions of the Laplace equation that can be expressed in terms of Lamé polynomials. Generalized ellipsoidal and sphero-conal harmonics are polynomial solutions of the more general Dunkl equation that can be expressed in terms of Stieltjes polynomials. Niven's formula connecting ellipsoidal and sphero-conal harmonics is generalized. Moreover, generalized ellipsoidal harmonics are applied to solve the Dirichlet problem for Dunkl's equation on ellipsoids.

Key words: generalized ellipsoidal harmonic; Stieltjes polynomials; Dunkl equation; Niven formula.

pdf (286 kb)   ps (188 kb)   tex (16 kb)

References

  1. Arscott F.M., Periodic differential equations, New York, Pergamon Press, MacMillan Company, 1964.
  2. Dunkl C.F., Reflection groups and orthogonal polynomials on the sphere, Math. Z., 1988, V.197, 33-60.
  3. Dunkl C.F., Computing with differential-difference operators, J. Symbolic Comput., 1999, V.28, 819-826.
  4. Dunkl C.F., Xu Y., Orthogonal polynomials of several variables, Cambridge, Cambridge University Press, 2001.
  5. Heine E., Handbuch der Kugelfunktionen, Vol. 1, Berlin, G. Reimer Verlag, 1878.
  6. Hobson E.W., The theory of spherical and ellipsoidal harmonics, Cambridge 1931.
  7. Hochstadt H., The functions of mathematical physics, New York, Wiley-Interscience, 1971.
  8. Kalnins E.G., Miller W.Jr., Tratnik M.V., Families of orthogonal and biorthogonal polynomials on the n-sphere, SIAM J. Math. Anal., 1991, V.22, 272-294.
  9. Kalnins E.G., Miller W.Jr., Hypergeometric expansions of Heun polynomials, SIAM J. Math. Anal., 1991, V.22, 1450-1459.
  10. Kalnins E.G., Miller W.Jr., Jacobi elliptic coordinates, functions of Heun and Lamé type and the Niven transform, Regul. Chaotic Dyn., 2005, V.10, 487-508.
  11. Kellog O.D., On bounded polynomials in several variables, Math. Z., 1927, V.27, 55-64.
  12. Komarov I.V., Kuznetsov V.B., Quantum Euler-Manakov top on the 3-sphere S3, J. Phys. A: Math. Gen., 1991, V.24, L737-L742.
  13. Kuznetsov V.B., Equivalence of two graphical calculi, J. Phys. A: Math. Gen., 1992, V.25, 6005-6026.
  14. Lokemba Liamba J.P., Expansions in generalized spherical harmonics in Rk+1, Ann. Sci. Math. Québec, 2002, V.26, 79-93.
  15. Müller C., Analysis of spherical symmetries in euclidian spaces, Applied Mathematical Sciences, Vol. 129, New York, Springer-Verlag, 1998.
  16. Schmidt D., Wolf G., A method of generating integral relations by the simultaneous separability of generalized Schrödinger equations, SIAM J. Math. Anal., 1979, V.10, 823-838.
  17. Stieltjes T.J., Sur certains polynômes qui vérifient une équation différentielle linéaire du second ordre et sur la théorie des fonctions de Lamé, Acta Math., 1885, V.5, 321-326.
  18. Szegö G., Orthogonal polynomials, Fourth edition, Providence, American Mathematical Society, 1975.
  19. Volkmer H., Expansion in products of Heine-Stieltjes polynomials, Constr. Approx., 1999, V.15, 467-480.
  20. Whittaker E.T., Watson G.N., A course in modern analysis, Cambridge, Cambridge Univ. Press, 1927.
  21. Xu Y., Orthogonal polynomials for a family of product weight functions on the spheres, Canad. J. Math., 1997, V.49, 175-192.
  22. Xu Y., Harmonic polynomials associated with reflection groups, Canad. Math. Bull., 2000, V.43, 496-507.


Previous article   Next article   Contents of Volume 2 (2006)