|
SIGMA 2 (2006), 074, 12 pages hep-ph/0512357
https://doi.org/10.3842/SIGMA.2006.074
Combined Analysis of Two- and Three-Particle Correlations in q,p-Bose Gas Model
Alexandre M. Gavrilik
N.N. Bogolyubov Institute for Theoretical Physics, Kyiv, Ukraine
Received December 29, 2005, in final form October 28, 2006; Published online November 07, 2006
Abstract
q-deformed oscillators and the q-Bose gas model
enable effective description of the observed non-Bose type
behavior of the intercept (''strength'') λ(2) ≡
C(2)(K,K) - 1 of two-particle correlation function
C(2)(p1,p2) of identical pions produced in heavy-ion
collisions.
Three- and n-particle correlation functions of pions (or kaons)
encode more information on the nature of the emitting sources in
such experiments. And so, the q-Bose gas model was further
developed: the intercepts of n-th order correlators of
q-bosons and the n-particle correlation intercepts within the
q,p-Bose gas model have been obtained, the result useful for
quantum optics, too. Here we present the combined analysis of two-
and three-pion correlation intercepts for the q-Bose gas model
and its q,p-extension, and confront with empirical data (from
CERN SPS and STAR/RHIC) on pion correlations. Similar to explicit
dependence of λ(2) on mean momenta of particles (pions,
kaons) found earlier, here we explore the peculiar behavior,
versus mean momentum, of the 3-particle correlation intercept
λ(3)(K).
The whole approach implies complete chaoticity of sources, unlike
other joint descriptions of two- and three-pion correlations using
two phenomenological parameters (e.g., core-halo fraction plus
partial coherence of sources).
Key words:
q- and q,p-deformed oscillators; ideal gas of q,p-bosons; n-particle correlations; intercepts of two and three-pion correlators.
pdf (763 kb)
ps (789 kb)
tex (1104 kb)
References
- Avancini S.S., Krein G.,
Many-body problems with composite particles and q-Heisenberg
algebras, J. Phys. A: Math. Gen., 1995, V.28, 685-691.
- Perkins W.A., Quasibosons,
Internat. J. Theoret. Phys., 2002, V.41, 823-838,
hep-th/0107003.
- Chang Z.,
Quantum group and quantum symmetry, Phys. Rep., 1995, V.262,
137-225,
hep-th/9508170.
- Kibler M.R., Introduction to quantum algebras,
hep-th/9409012.
- Mishra A.K., Rajasekaran G.,
Generalized Fock spaces, new forms of quantum statistics and their
algebras, Pramana, 1995, V.45, 91-139,
hep-th/9605204.
- Man'ko V.I., Marmo G., Sudarshan E.C.G., Zaccaria F.,
f-oscillators and nonlinear coherent states, Phys.
Scripta, 1997, V.55, 528-541,
quant-ph/9612006.
- Gavrilik A.M.,
q-Serre relations in Uq(un), q-deformed meson mass sum
rules, and Alexander polynomials, J. Phys. A: Math. Gen.,
1994, V.27, L91-L94.
- Gavrilik A.M., Iorgov N.Z., Quantum groups as flavor symmetries:
account of nonpolynomial SU(3)-breaking effects in baryon
masses, Ukrain. J. Phys., 1998, V.43, 1526-1533,
hep-ph/9807559.
- Chaichian M., Gomez J.F., Kulish P.,
Operator formalism of q deformed dual string model, Phys.
Lett. B, 1993, V.311, 93-97,
hep-th/9211029.
- Jenkovszky L., Kibler M., Mishchenko A.,
Two-parametric quantum deformed dual amplitude, Modern Phys.
Lett. B, 1995, V.10, 51-60,
hep-ph/9407071.
- Gavrilik A.M.,
Quantum algebras in phenomenological description of particle
properties, Nucl. Phys. B (Proc. Suppl.), 2001, V.102,
298-305,
hep-ph/0103325.
- Gavrilik A.M., Quantum groups and Cabibbo mixing, in Proceedings
of Fifth International Conference "Symmetry in Nonlinear
Mathematical Physics" (June 23-29, 2003, Kyiv), Editors
A.G. Nikitin, V.M. Boyko, R.O. Popovych and I.A. Yehorchenko,
Proceedings of Institute of Mathematics, Kyiv, 2004, V.50,
Part 2, 759-766,
hep-ph/0401086.
- Anchishkin D.V., Gavrilik A.M., Iorgov N.Z.,
Two-particle correlations from the q-Boson viewpoint, Eur.
Phys. J. A, 2000, V.7, 229-238,
nucl-th/9906034.
- Anchishkin D.V., Gavrilik A.M., Iorgov N.Z.,
q-Boson approach to multiparticle correlations, Modern
Phys. Lett. A, 2000, V.15, 1637-1646,
hep-ph/0010019.
- Anchishkin D.V., Gavrilik A.M., Panitkin S.,
Intercept parameter l of two-pion (-kaon) correlation
functions in the q-boson model: character of its
pT-dependence, Ukrain. J. Phys., 2004, V.49, 935-939,
hep-ph/0112262.
- Zhang Q.H., Padula S.S.,
Q-boson interferometry and generalized Wigner function,
Phys. Rev. C, 2004, V.69, 24907, 11 pages, nucl-th/0211057.
- Gutierrez T., Intensity interferometry with anyons,
Phys. Rev. A, 2004, V.69, 063614, 5 pages, quant-ph/0308046.
- Wiedemann U.A., Heinz U., Particle interferometry for relativistic
heavy-ion collisions, Phys. Rept., 1999, V.319, 145-230,
nucl-th/9901094.
- Heinz U., Zhang Q.H.,
What can we learn from three-pion interferometry? Phys. Rev.
C1997, V.56, 426-431,
nucl-th/9701023.
- Adamska L.V., Gavrilik A.M., Multi-particle correlations in
qp-Bose gas model, J. Phys. A: Math. Gen., 2004, V.37,
N 17, 4787-4795,
hep-ph/0312390.
- Csorgö T. et al., Partial coherence in the core/halo picture of
Bose-Einstein n-particle correlations, Eur. Phys. J. C,
1999, V.9, 275-281,
hep-ph/9812422.
- Csanad M. for PHENIX Collab., Measurement and analysis of two-
and three-particle correlations,
nucl-ex/0509042.
- Morita K., Muroya S., Nakamura H., Source chaoticity from two- and
three-pion correlations in Au+Au collisions at sNN1/2=130
GeV, nucl-th/0310057.
- Biyajima M., Kaneyama M., Mizoguchi T., Analyses of two- and
three-pion Bose-Einstein correlations using Coulomb wave
functions, Phys. Lett. B, 2004, V.601, 41-50,
nucl-th/0312083.
- Arik M., Coon D.D., Hilbert spaces of analytic functions and
generalized coherent states, J. Math. Phys., 1976, V.17,
524-527.
- Fairlie D., Zachos C., Multiparameter associative generalizations
of canonical commutation relations and quantized planes,
Phys. Lett. B, 1991, V.256, 43-49.
- Meljanac S., Perica A., Generalized quon statistics,
Modern Phys. Lett. A, 1994, V.9, 3293-3300.
- Chakrabarti A., Jagannathan R.,
A (p,q)oscillator realization of two-parameter quantum algebras,
J. Phys. A: Math. Gen., 1991, V.24, L711-L718.
- Macfarlane A.J.,
On q-analogues of the quantum harmonic oscillator and the
quantum group SUq(2), J. Phys. A: Math. Gen., 1989,
V.22, 4581-4585.
- Biedenharn L.C., The quantum group SUq(2) and a q-analogue of
the boson operators, J. Phys. A: Math. Gen., 1989, V.22,
L873-L878.
- Altherr T., Grandou T., Thermal field theory and infinite
statistics,
Nucl. Phys. B, 1993, V.402, 195-216.
- Vokos S., Zachos C., Thermodynamic q-distributions that aren't,
Modern Phys. Lett. A, 1994, V.9, 1-9.
- Lavagno A., Narayana Swamy P., Thermostatistics of q deformed
boson gas, Phys. Rev. E, 2000, V.61, 1218-1226,
quant-ph/9912111.
- Daoud M., Kibler M., Statistical mechanics of qp-bosons in D
dimensions, Phys. Lett. A, 1995, V.206, 13-17,
quant-ph/9512006.
- Adler C. et al. [STAR Collab.], Pion interferometry of
S(NN)1/2 = 130-GeV Au+Au collisions at RHIC, Phys. Rev.
Lett., 2001, V.87, 082301, 6 pages,
nucl-ex/0107008.
- Adams J. et al. [STAR Collab.], Three-pion HBT correlations in
relativistic heavy-ion collisions from the STAR experiment,
Phys. Rev. Lett., 2003, V.91, 262301, 6 pages,
nucl-ex/0306028.
- Aggarwal M.M. et al. [WA98 Collab.], One-, two- and three-particle
distributions from 158A GeV/c central Pb+Pb collisions,
Phys. Rev. C, 2003, V.67, 014906, 24 pages, nucl-ex/0210002.
- Bearden I.G. et al. [NA44 Collab.], One-dimensional and
two-dimensional analysis of 3 pi correlations measured in Pb + Pb
interactions, Phys. Lett. B, 2001, V.517, 25-31,
nucl-ex/0102013.
- Cheng T.-P., Li L.-F., Gauge theory of elementary particle
physics,
Oxford, Clarendon Press, 1984.
- Odaka K., Kishi T., Kamefuchi S., On quantization of simple
harmonic oscillators, J. Phys. A: Math. Gen., 1991, V.24,
L591-L596.
- Chaturvedi S., Srinivasan V., Jagannathan R., Tamm-Dancoff
deformation of bosonic oscillator algebras, Modern Phys.
Lett. A, 1993, V.8, 3727-3734.
- Heiselberg H., Vischer A.P.,
The phase in three-pion correlations,
nucl-th/9707036.
- Csorgo T., Szerzo A.T.,
Model independent shape analysis of correlations in 1, 2 or 3
dimensions, Phys. Lett. B, 2000, V.489, 15-23,
hep-ph/0011320.
|
|