|
SIGMA 2 (2006), 077, 28 pages math.DG/0611288
https://doi.org/10.3842/SIGMA.2006.077
The Torsion of Spinor Connections and Related Structures
Frank Klinker
University of Dortmund, 44221 Dortmund, Germany
Received August 25, 2006, in final form November 03, 2006; Published online November 09, 2006
Abstract
In this text we introduce the torsion of spinor
connections. In terms of the torsion we give conditions on a
spinor connection to produce Killing vector fields. We relate
the Bianchi type identities for the torsion of spinor connections
with Jacobi identities for vector fields on supermanifolds.
Furthermore, we discuss applications of this notion of torsion.
Key words:
spinor connection; torsion; Killing vector; supermanifold.
pdf (411 kb)
ps (285 kb)
tex (34 kb)
References
- Alekseevsky D.V., Cortés V., Devchand C.,
van Proeyen A., Polyvector super-Poincaré algebras, Comm.
Math. Phys., 2005, V.253, 385-422,
hep-th/0311107.
- Alekseevsky D.V., Cortés V., Devchand C., Semmelmann U.,
Killing spinors are Killing vector fields in Riemannian
supergeometry,
J. Geom. Phys., 1998, V.26, 37-50,
dg-ga/9704002.
- Alekseevsky D.V., Cortés V.,
Classification of N-extended Poincaré algebras and
bilinear
invariants of the spinor representation of Spin(p,q),
Comm. Math. Phys., 1997, V.183, 477-510,
math.RT/9511215.
- Alishahiha M., Mohammad A. Ganjali M.A., Ghodsi A., Parvizi S., On
type IIA string theory on the PP-wave background, Nuclear
Phys. B, 2003, V.661, 174-190, 2003,
hep-th/0207037.
- Alishahiha M., Kumar A., D-brane solutions from new isometries of
pp-waves, Phys. Lett. B, 2002, V.542, 130-136,
hep-th/0205134.
- Atiyah M.F., Hitchin N.J., Singer I.M.,
Self-duality in four-dimensional Riemannian geometry. Proc.
Roy. Soc. London Ser. A, 1978, V.362, N 1711, 425-461.
- Bär C., Real Killing spinors and holonomy, Comm. Math.
Phys., 1993, V.154, 509-521.
- Baum H., Complete Riemannian manifolds with imaginary Killing
spinors, Ann. Global Anal. Geom., 1989, V.7, 205-226.
- Baum H., Friedrich T., Grunewald R., Kath I., Twistors and Killing
spinors on Riemannian manifolds, Teubner-Texte zur
Mathematik, Vol. 124, Stuttgart, B.G. Teubner
Verlagsgesellschaft, 1991.
- Bergshoeff E., de Roo M., Janssen B., Ortín T., The super
D9-brane and its truncations, Nuclear Phys. B,
1999, V.550, 289-302, 1999,
hep-th/9901055.
- Bernhardt N., Nagy P.-A., On algebraic torsion forms and their
spin holonomy algebra,
math.DG/0608509.
- Blau M., Supergravity solitons, Lecture available at
http://www.unine.ch/phys/string/mblau/mblau.html.
- Chevalley C., The algebraic theory of spinors and Clifford
algebras, Collected works, Vol. 2, Berlin, Springer-Verlag, 1997
(Edited and with a foreword by P. Cartier
and C. Chevalley, postface by J.-P. Bourguignon).
- Cremmer E., Julia B., The SO(8) supergravity, Nuclear Phys.
B, 1979, V.159, 141-212.
- Cremmer E., Julia B., Scherk J., Supergravity theory in 11
dimensions, Phys. Lett. B, 1979, V.76, 409-412.
- Friedrich T., Stefan Ivanov S., Parallel spinors and connections
with skew-symmetric torsion in
string theory,
Asian J. Math., 2002, V.6, 303-335,
math.DG/0102142.
- Green M.B., Schwarz J.H., Witten E., Superstring theory,
Vols. 1-2, 2nd ed., Cambridge Monographs on Mathematical
Physics, Cambridge, Cambridge University
Press, 1988.
- Ivanov P., Ivanov S., SU(3)-instantons and G2, Spin(7)-heterotic string solitons,
Comm. Math. Phys., 2005, V.259, 79-102,
math.DG/0312094.
- Ivanov S., Connections with torsion, parallel spinors and geometry
of Spin(7)
manifolds,
Math. Res. Lett., 2004, V.11, 171-186,
math.DG/0111216.
- Ivanov S., Papadopoulos G., Vanishing theorems and string
backgrounds,
Class. Quant. Grav., 2001, V.18, 1089-1110, math.DG/0010038.
- Kath I., Killing spinors on pseudo-Riemannian manifolds,
Habilitation Thesis, Berlin, Humboldt University, 2000.
- Kath I.,
Parallel pure spinors on pseudo-Riemannian manifolds, in Geometry
and Topology of Submanifolds X, Proceedings of the Conference on
Differential Geometry in Honor of Prof. S.S. Chern (1999,
Beijing - Berlin), Editors W.H. Chen et al., Singapore, World
Scientific, 2000, 87-103.
- Kennedy A.D.,
Clifford algebras in 2w dimensions, J. Math. Phys,
1981, V.22, 1330-1337.
- Klinker F., Supersymmetric Killing structures, PhD Thesis,
University Leipzig, 2003.
- Klinker F., Supersymmetric Killing structures, Comm. Math.
Phys., 2005, V.255, 419-467.
- Kostant B., Graded manifolds, graded Lie theory, and
prequantization. in Differential Geometrical Methods in
Mathematical Physics (1975, University of Bonn), Lecture
Notes in
Math., Vol. 570, Berlin, Springer, Berlin, 1977, 177-306.
- Lawson H.B.Jr., Michelsohn M.-L., Spin geometry, Princeton
Mathematical
Series, Vol. 38, Princeton, NJ,
Princeton University Press, 1989.
- Mangiarotti L., Sardanashvily G., Connections in classical and
quantum field theory, Singapore, World Scientific, 2000.
- Moroianu A., On the infinitesimal isometries of manifolds with
Killing spinors, J. Geom. Phys., 2000, V.35, 63-74.
- Papadopoulos G., Spin cohomology, J. Geom. Phys., 2006, V.56, 1893-1919,
math.DG/0410494.
- Papadopoulos G., Tsimpis D., The holonomy of the supercovariant
connection and Killing spinors, JHEP, 2003, V.7, 018, 28
pages, hep-th/0306117.
- van Proeyen A., Tools for supersymmetry,
hep-th/9910030.
|
|