|
SIGMA 2 (2006), 079, 4 pages math-ph/0609081
https://doi.org/10.3842/SIGMA.2006.079
Contribution to the Proceedings of the O'Raifeartaigh Symposium
u-Deformed WZW Model and Its Gauging
Ctirad Klimčík
Institute de mathématiques de Luminy, 163, Avenue de Luminy, 13288 Marseille, France
Received September 28, 2006; Published online November 13, 2006
Abstract
We review the description of a particular deformation
of the WZW model. The resulting theory exhibits
a Poisson-Lie symmetry with a non-Abelian cosymmetry group and can be vectorially gauged.
Key words:
gauged WZW model; Poisson-Lie symmetry.
pdf (167 kb)
ps (134 kb)
tex (8 kb)
References
- Balog J., Fehér L., Palla L., Chiral extensions of the WZNW phase space,
Poisson-Lie symmetries and groupoids, Nucl. Phys. B, 2000,
V.568, 503-542,
hep-th/9910046.
- Klimčík C., Quasitriangular WZW model, Rev. Math. Phys.,
2004, V.16, 679-808, hep-th/0103118.
- Klimčík C., Poisson-Lie symmetry and q-WZW model,
in Proceedings of the 4th International Symposium "Quantum
Theory and Symmetries" (August 15-21, 2005, Varna),
Sofia, Heron Press, 2006, V.1, 382-393, hep-th/0511003.
- Klimčík C., On moment maps associated to a twisted Heisenberg double,
Rev. Math. Phys., 2006, V.18, 781-821,
math-ph/0602048.
- Semenov-Tian-Shansky M., Poisson Lie groups, quantum duality principle and the twisted quantum double,
Theor. Math. Phys., 1992, V.93, 1292-1307,
hep-th/9304042.
- Witten E., Non-Abelian bosonisation in two dimensions, Comm. Math. Phys., 1984, V.92, 455-472.
|
|