|
SIGMA 2 (2006), 089, 9 pages hep-th/0611025
https://doi.org/10.3842/SIGMA.2006.089
Contribution to the Proceedings of the O'Raifeartaigh Symposium
Einstein-Riemann Gravity on Deformed Spaces
Julius Wess a, b, c
a) Arnold Sommerfeld Center for Theoretical
Physics Universität München, Theresienstr. 37, 80333 München, Germany
b) Max-Planck-Institut für Physik, Föhringer
Ring 6, 80805 München, Germany
c) Universität Hamburg, II Institut für Theoretische Physik and DESY,
Luruper Chaussee 149, 22761 Hamburg, Germany
Received October 27, 2006, in final form November
28, 2006; Published online December 11, 2006
Abstract
A differential calculus, differential geometry and
the E-R Gravity theory are studied on noncommutative spaces.
Noncommutativity is formulated in the star product formalism. The
basis for the gravity theory is the infinitesimal algebra of
diffeomorphisms. Considering the corresponding Hopf algebra we
find that the deformed gravity is based on a deformation of the
Hopf algebra.
Key words:
noncommutative spaces; deformed gravity.
pdf (196 kb)
ps (147 kb)
tex (12 kb)
References
- Aschieri P., Blohmann C., Dimitrijevic M., Meyer F., Schupp P.,
Wess J., A gravity theory on noncommutative spaces, Classical
Quantum Gravity, 2005, V.22, 3511-3522,
hep-th/0504183.
- Aschieri P., Dimitrijevic M., Meyer F., Wess J.,
Noncommutative geometry and gravity, Classical Quantum
Gravity, 2006, V.23, 1883-1912,
hep-th/0510059.
- Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D.,
Deformation theory and quantization. I. Deformations of symplectic structures, Ann. Physics, 1978,
V.111, 61-110.
- Sternheimer D., Deformation quantization: twenty years after,
AIP Conf. Proc., 1998, V.453, 107-145,
math.QA/9809056.
- Kontsevich M., Deformation quantization of Poisson manifolds,
Lett. Math. Phys., 2003, V.66, 157-216,
q-alg/9709040.
- Waldman S., An introduction to deformation quantization, Lecture Notes, 2002,
see
http://idefix.physik.uni-freiburg.de/~stefan/Skripte/intro/index.html.
- Weyl H., Quantenmechanik und Gruppentheorie, Zeit. für Phys., 1927,
V.46, 1-46.
- Moyal J.E., Quantum mechanics as a statistical theory,
Proc. Cambridge Phil. Soc., 1949, V.45, 99-124.
- Wess J., Zumino B., Covariant differential calculus on the
quantum hyperplane, Nuclear Phys. B Proc. Suppl., 1991,
V.18, 302-312.
- Woronowic S.L., Differential calculus on compact matrix pseudogroups (quantum groups),
Comm. Math. Phys., 1989, V.122, 125-170.
- Wess J., Deformed coordinate spaces; derivatives, in Proceedings
of the BW2003 Workshop on Mathematical, Theoretical and
Phenomenological Challenges Beyond the Standard Model: Perspectives of Balkans Collaboration
(2003, Vrnjacka Banja, Serbia),
Vrnjacka Banja, 2003, 122-128, hep-th/0408080.
- Wess J., Differential calculus and gauge transformations on a
deformed space,
hep-th/0607251.
- Wess J., Deformed gauge theories,
hep-th/0608135.
- Aschieri P., Dimitrijevic M., Meyer F., Schraml S., Wess J.,
Twisted gauge theories, Lett. Math. Phys., 2006, V.78,
61-71,
hep-th/0603024.
- Vassilevich D.V., Twist to close,
Modern Phys. Lett. A, 2006, V.21, 1279-1284,
hep-th/0602185.
- Drinfel'd V.G., On constant quasiclassical solutions of the
Yang-Baxter equations, Soviet Math. Dokl., 1983, V.28,
667-671.
- Reshetikhin N., Multiparameter quantum groups and twisted
quasitriangular Hopf algebras, Lett. Math. Phys., 1990,
V.20, 331-335.
- Gerstenhaber M., Giaquinto A., Schack S.D., Quantum symmetry, in Quantum
Groups, Lecture Notes in Math.,
V.1510, Editor P.P. Kulish, Berlin, Springer-Verlag, 1992,
9-46.
- Kulish P.P., Lyakhovsky V.D., del Olmo M.A., Chains of twists for
classical Lie algebras, J. Phys. A: Math. Phys., 1999, V.32,
8671-8684,
math.QA/9908061.
|
|