|
SIGMA 2 (2006), 092, 29 pages math.QA/0606121
https://doi.org/10.3842/SIGMA.2006.092
Contribution to the Vadim Kuznetsov Memorial Issue
A q-Analogue of the Centralizer Construction and Skew Representations of the Quantum Affine Algebra
Mark J. Hopkins and Alexander I. Molev
School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
Received October 14, 2006; Published online December 26, 2006
Abstract
We prove an analogue of the Sylvester theorem for the generator
matrices of the quantum affine algebra Uq(gln).
We then use it to give an explicit realization of the
skew representations of the quantum affine algebra.
This allows one to identify them in a simple way
by calculating their highest weight, Drinfeld
polynomials and the Gelfand-Tsetlin character (or q-character).
We also apply the quantum Sylvester theorem to
construct a q-analogue of the Olshanski algebra
as a projective limit of certain centralizers in Uq(gln)
and show that this limit algebra contains the q-Yangian
as a subalgebra.
Key words:
quantum affine algebra; quantum Sylvester theorem; skew representations.
pdf (392 kb)
ps (258 kb)
tex (29 kb)
References
- Bazhanov V.V., Reshetikhin N.,
Restricted solid-on-solid models connected
with simply laced algebras and conformal field theory,
J. Phys. A: Math. Gen., 1990, V.23, 1477-1492.
- Brundan J., Kleshchev A.,
Parabolic presentations of the Yangian Y(gln),
Comm. Math. Phys., 2005, V.254, 191-220, math.QA/0407011.
- Brundan J., Kleshchev A.,
Representations of shifted Yangians and finite W-algebras,
math.RT/0508003.
- Chari V., Pressley A.,
A guide to quantum groups,
Cambridge University Press, 1994.
- Cherednik I.V.,
A new interpretation of Gelfand-Tzetlin bases, Duke Math. J.,
1987, V.54, 563-577.
- Ding J., Frenkel I.,
Isomorphism of two realizations of quantum affine algebra
U(gl(n)), Comm. Math. Phys., 1993, V.156, 277-300.
- Drinfeld V.G.,
Hopf algebras and the
quantum Yang-Baxter equation,
Soviet Math. Dokl., 1985, V.32, 254-258.
- Frenkel E., Mukhin E.,
The Hopf algebra Rep Uq gl¥,
Selecta Math., 2002, V.8, 537-635, math.QA/0103126.
- Frenkel E., Reshetikhin N.,
The q-characters of representations of quantum affine algebras
and deformations of W-algebras,
Contemp. Math., 1999, V.248,
163-205, math.QA/9810055.
- Gelfand I.M., Retakh V.S.,
Determinants
of matrices over noncommutative rings,
Funct. Anal. Appl., 1991, V.25, 91-102.
- Jimbo M.,
A q-analogue of Uq(gl(N+1)), Hecke algebra and
the Yang-Baxter equation,
Lett. Math. Phys., 1986, V.11, 247-252.
- Jimbo M.,
Quantum R-matrix for the generalized Toda system,
Comm. Math. Phys., 1986, V.102,
537-547.
- Klimyk A., Schmüdgen K.,
Quantum groups and their
representations, Berlin, Springer, 1997.
- Knight H., Spectra of tensor products of
finite-dimensional representations of Yangians, J. Algebra, 1995, V.174, 187-196.
- Krob D., Leclerc B., Minor identities for
quasi-determinants and quantum determinants, Comm.
Math. Phys., 1995, V.169, 1-23, hep-th/9411194.
- Kuznetsov V.B., Koornwinder T.H.,
Gauss hypergeometric
function and quadratic R-matrix algebras,
St. Petersburg Math. J., 1995, V.6, 595-618, hep-th/9311152.
- Kuznetsov V.B.,
3F2(1) hypergeometric function and
quadratic R-matrix algebra,
in Symmetries and Integrability of Difference Equations (Estérel, PQ, 1994),
CRM Proc. Lecture Notes, Vol. 9, Providence, RI, Amer. Math. Soc., 1996, 185-197,
math.QA/9411225.
- Macdonald I.G., Symmetric functions and Hall polynomials, Oxford,
Oxford University Press, 1995.
- Molev A.I.,
Yangians and transvector algebras,
Discrete Math., 2002, V.246, 231-253, math.QA/9811115.
- Molev A., Nazarov M., Olshanski G.,
Yangians and classical Lie algebras,
Russian Math. Surveys, 1996, V.51. N 2,
205-282, hep-th/9409025.
- Molev A., Olshanski G.,
Centralizer construction for twisted Yangians,
Selecta Math., 2000, V.6, 269-317, q-alg/9712050.
- Molev A., Ragoucy E., Sorba P.,
Coideal subalgebras in
quantum affine algebras, Rev. Math. Phys., 2003, V.15, 789-822,
math.QA/0208140.
- Nakai W., Nakanishi T.,
Paths, tableaux and q-characters of quantum affine
algebras: the Cn case,
math.QA/0502041.
- Nazarov M.,
Yangian of the queer Lie superalgebra,
Comm. Math. Phys., 1999, V.208, 195-223, math.QA/9902146.
- Nazarov M., Tarasov V.,
Yangians and Gelfand-Zetlin bases,
Publ. Res. Inst. Math. Sci. Kyoto Univ., 1994, V.30, 459-478,
hep-th/9302102.
- Nazarov M., Tarasov V.,
Representations of Yangians with Gelfand-Zetlin bases,
J. Reine Angew. Math., 1998, V.496, 181-212, q-alg/9502008.
- Olshanski G.I.,
Extension of the algebra U(g) for
infinite-dimensional classical Lie algebras g,
and the Yangians Y(gl(m)),
Soviet Math. Dokl., 1988, V.36, 569-573.
- Olshanski G.I.,
Representations of
infinite-dimensional classical groups, limits of enveloping algebras, and
Yangians,
in Topics in Representation Theory,
Editor A.A. Kirillov,
Advances in Soviet Math., Vol. 2, Providence, RI,
Amer. Math. Soc., 1991, 1-66.
- Olshanski G.I.,
Twisted Yangians and infinite-dimensional classical Lie algebras,
in Quantum Groups, Editor P.P. Kulish, Lecture Notes in Math.,
Vol. 1510, Berlin-Heidelberg,
Springer,
1992,
103-120.
- Reshetikhin N.Yu., Takhtajan L.A., Faddeev L.D.,
Quantization of Lie groups and Lie algebras, Leningrad Math. J.,
1990, V.1, 193-225.
|
|