Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 2 (2006), 094, 9 pages      hep-th/0606115      https://doi.org/10.3842/SIGMA.2006.094
Contribution to the Proceedings of the O'Raifeartaigh Symposium

Noncommutative Geometry: Fuzzy Spaces, the Groenewold-Moyal Plane

Aiyalam P. Balachandran and Babar Ahmed Qureshi
Department of Physics, Syracuse University, Syracuse, NY, USA

Received September 22, 2006, in final form December 14, 2006; Published online December 29, 2006

Abstract
In this talk, we review the basics concepts of fuzzy physics and quantum field theory on the Groenewold-Moyal Plane as examples of noncommutative spaces in physics. We introduce the basic ideas, and discuss some important results in these fields. At the end we outline some recent developments in the field.

Key words: noncommutative geometry; quantum algebra; quantum field theory.

pdf (226 kb)   ps (164 kb)   tex (33 kb)

References

  1. Connes A., Noncommutative geometry, San Diego, CA, Academic Press, 1994.
  2. Varilly J.C., Figueroa H., Gracia-Bondia J.M., Elements of noncommutative geometry, Boston, Birkhauser, 2000.
  3. Landi G., Introduction to noncommutative spaces and their geometries, New York, Springer Verlag, 1997.
  4. Jackiw R., Physical instances of noncommuting coordinates, Nuclear Phys. Proc. Suppl., 2002, V.108, 30-36, hep-th/0110057.
  5. Pauli W., Letter of Heisenberg to Peirels (1930), in Wolfgang Pauli, Scientific Correspondence, Vol. II, Springer Verlag, 1985, 15-15.
  6. Snyder H., Quantized space-time, Phys. Rev., 1947, V.71, 38-41.
  7. Yang C.N., On quantized space-time, Phys. Rev., 1947, V.72, 874-874.
  8. Doplicher S., Fredenhagen K., Roberts J., Space-time quantization induced by classical gravity, Phys. Lett. B, 1994, V.331, 39-44.
  9. Doplicher S., Fredenhagen K., Roberts J., The quantum structure of space-time at the Planck scale and quantum fields, Comm. Math. Phys., 1995, V.172, 187-220, hep-th/0303037.
  10. Connes A., Landi G., Noncommutative manifolds: the instanton algebra and isospectral deformations, Comm. Math. Phys., 2001, V.221, 141-159, math.QA/0011194.
  11. Balachandran A.P., Kurkcuoglu S., Vaidya S., Lectures on fuzzy and fuzzy susy physics, World Scientific, to appear, hep-th/0511114.
  12. Hoppe J., Quantum theory of a massless relativistic surface and a two dimensional bound state problem, PhD Thesis, MIT, 1982.
  13. Madore J., The fuzzy sphere, Classical Quantum Gravity, 1992, V.9, 69-88.
  14. Madore J., An introduction to non-commutative differential geometry and its physical applications, Cambridge, Cambridge University Press, 1995.
  15. Martin X., A matrix phase for the f4 scalar field on the fuzzy sphere, JHEP, 2004, N 4, Paper 077, 15 pages, hep-th/0402230.
  16. Flores F.G., O'Connor D., Martin X., Simulating the scalar field on the fuzzy sphere, in Proceedings for the XXIIIrd International Symposium on Lattice Field Theory, PoSLat2005, 2006, 262, 6 pages, hep-lat/0601012.
  17. Gubser S.S., Sondhi S.L., Phase structure of non-commutative scalar field theories, Nuclear Phys. B, 2001, V.605, 395-424, hep-th/0006119.
  18. Ambjorn J., Catterall S., Stripes from (noncommutative) stars, Phys. Lett. B, 2002, V.549, 253-259, hep-lat/0209106.
  19. Medina J., Bietenholz W., Hofheinz F., O'Connor D., Field theory simulations on a fuzzy sphere - an alternative to the lattice, PoSLAT2005, 2006, 263, 6 pages, hep-lat/0509162.
  20. Grosse H., Klimcik C., Presnajder P., Field theory on a supersymmetric lattice, Comm. Math. Phys., 1997, V.185, 155-175, hep-th/9507074.
  21. Grosse H., Klimcik C., Presnajder P., N = 2 superalgebra and non-commutative geometry, hep-th/9603071.
  22. Balachandran A.P., Immirzi G., The fuzzy Ginsparg-Wilson algebra: a solution of the fermion doubling problem, Phys. Rev. D, 2003, V.68, 065023, 7 pages, hep-th/0301242.
  23. Carow-Watamura U., Watamura S., Chirality and Dirac operator on noncommutative sphere, Comm. Math. Phys., 1997, V.183, 365-382, hep-th/9605003.
  24. Baez S., Balachandran A.P., Ydri B., Vaidya S., Monopoles and solitons in fuzzy physics, Comm. Math. Phys., 2000, V.208, 787-798, hep-th/9811169.
  25. Balachandran A.P., Govindarajan T.R., Ydri B., The fermion doubling problem and noncommutative geometry, Modern Phys. Lett. A, 2000, V.15, 1279-1286, hep-th/9911087.
  26. Balachandran A.P., Govindarajan T.R., Ydri B., Fermion doubling problem and noncommutative geometry II, hep-th/0006216.
  27. Grosse H., Reiter G., The fuzzy supersphere, J. Geom. Phys., 1998, V.28, 349-383, math-ph/9804013.
  28. Klimcik C., A nonperturbative regularization of the supersymmetric Schwinger model, Comm. Math. Phys., 1999, V.206, 567-586, hep-th/9903112.
  29. Klimcik C., An extended fuzzy supersphere and twisted chiral superfields, Comm. Math. Phys., 1999, V.206, 587-601, hep-th/9903202.
  30. Balachandran A.P., Kurkcuoglu S., Rojas E., The star product on the fuzzy supersphere, JHEP, 2002, N 7, Paper 056, 21 pages, hep-th/0204170.
  31. Balachandran A.P., Pinzul A., Qureshi B., SUSY anomalies break N = 2 to N = 1: the supersphere and the fuzzy supersphere, JHEP, 2005, N 12, Paper 002, 14 pages, hep-th/0506037.
  32. Kurkcuoglu S., Non-linear sigma model on the fuzzy supersphere, JHEP, 2004, N 3, Paper 062, 11 pages, hep-th/0311031.
  33. Szabo R.J., D-branes in noncommutative field theory, hep-th/0512054.
  34. Ezawa Z.F., Tsitsishvili G., Hasebe K., Noncommutative geometry, extended W¥ algebra and Grassmannian solitons in multicomponent quantum Hall systems, Phys. Rev. B, 2003, V.67, 125314, 15 pages, hep-th/0209198.
  35. Seiberg N., Witten E., String theory and noncommutative geometry, JHEP, 1999, N 9, Paper 032, 100 pages, hep-th/9908142.
  36. Minwala S., van Raamsdonk M., Seiberg N., Noncommutative perturbative dynamics, JHEP, 2000, N 2, Paper 020, 33 pages, hep-th/9912072.
  37. Chaichian M., Kulish P.P., Nishijima K., Tureanu A., On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT, Phys. Lett. B, 2004, V.604, 98-102, hep-th/0408069.
  38. Chaichian M., Presnajder P., Tureanu A., New concept of relativistic invariance in NC space-time: twisted Poincaré symmetry and its implications, Phys. Rev. Lett., 2005, V.94, 151602, 15 pages, hep-th/0409096.
  39. Dimitrijevic M., Wess J., Deformed bialgebra of diffeomorphisms, hep-th/0411224.
  40. Aschieri P., Blohmann C., Dimitrijevic M., Meyer F., Schupp P., Wess J., A gravity theory on noncommutative spaces, Classical Quantum Gravity, 2005, V.22, 3511-3532, hep-th/0504183.
  41. Drinfel'd V.G., Quasi Hopf algebras, Leningrad Math. J., 1990, V.1, 1419-1457.
  42. Balachandran A.P., Mangano G., Pinzul A., Vaidya S., Spin and statistics on the Groenewold-Moyal plane: Pauli-Forbidden levels and transitions, Internat. J. Modern Phys. A, 2006, V.21, 3111-3126, hep-th/0508002.
  43. Qureshi B.A., Twisted supersymmetry, fermion-boson mixing and removal of UV-IR mixing, hep-th/0602040.
  44. Tureanu A., Twist and spin-statistics relation in noncommutative quantum field theory, Phys. Lett. B, 2006, V.638, 296-301, hep-th/0603219.
  45. Zahn J., Remarks on twisted noncommutative quantum field theory, Phys. Rev. D, 2006, V.73, 105005, 13 pages, hep-th/0603231.
  46. Balachandran A.P., Govindarajan T.R., Mangano G., Pinzul A., Qureshi B.A., Vaidya S., Statistics and UV-IR mixing with twisted Poincaré invariance, hep-th/0608179.
  47. Majid S., Foundations of quantum group theory, Cambridge University Press, 1995.
  48. Oeckl R., Untwisting noncommutative Rd and the equivalence of quantum field theories, Nuclear Phys. B, 2000, V.581, 559-574, hep-th/0003018.
  49. Fiore G., Schupp P., Statistics and quantum group symmetries, in Quantum Groups and Quantum Spaces, Banach Centre Publications, Vol. 40, Warszawa, Institute of Mathematics, Polish Academy of Sciences, 1997, 369-377.
  50. Fiore G., Deforming maps and Lie group covariant creation and annihilation operators, J. Math. Phys., 1998, V.39, 3437-3452, q-alg/9610005.
  51. Fiore G., Schupp P., Identical particles and quantum symmetries, Nuclear Phys. B, 1996, V.470, 211-235, hep-th/9508047.
  52. Watts P., Noncommutative string theory, the R-matrix and Hopf algebras, Phys. Lett. B, 2000, V.474, 295-302, hep-th/9911026.
  53. Watts P., Derivatives and the role of the Drinfel'd twist in noncommutative string theory, hep-th/0003234.
  54. Balachandran A.P., Pinzul A., Qureshi B.A., UV-IR mixing in non-commutative plane, Phys. Lett. B, 2006, V.634, 434-436, hep-th/0508151.
  55. Balachandran A.P., Pinzul A., Qureshi B.A., Vaidya S., Poincaré invariant gauge and gravity theories on the Groenewold-Moyal plane, hep-th/0608138.


Previous article   Next article   Contents of Volume 2 (2006)