|
SIGMA 2 (2006), 097, 15 pages nlin.SI/0701004
https://doi.org/10.3842/SIGMA.2006.097
Contribution to the Vadim Kuznetsov Memorial Issue
On the Darboux-Nijenhuis Variables for the Open Toda Lattice
Yuriy A. Grigoryev and Andrey V. Tsiganov
St.Petersburg State University, St.Petersburg, Russia
Received November 17, 2006; Published online December 30, 2006
Abstract
We discuss two known constructions proposed by Moser and
by Sklyanin of the Darboux-Nijenhuis coordinates for the open
Toda lattice.
Key words:
bi-Hamiltonian systems; Toda lattice.
pdf (259 kb)
ps (183 kb)
tex (16 kb)
References
- Atiyah M., Hitchin N., The geometry and dynamics of magnetic
monopoles, M.B. Porter Lectures, Princeton Univ. Press,
1988.
- Das A., Okubo S.,
A systematic study of the Toda lattice, Ann. Phys., 1989,
V.30, 215-232.
- Falqui G., Magri F., Pedroni M.,
Bihamiltonian geometry and separation of variables for Toda
lattices, J. Nonlinear Math. Phys., 2001, V.8, 118-127,
nlin.SI/0002008.
- Falqui G., Pedroni M.,
Separation of variables for bi-Hamiltonian systems, Math.
Phys. Anal. Geom., 2003, V.6, 139-179,
nlin.SI/0204029.
- Faybusovich L., Gekhtman M.,
Poisson brackets on rational functions and multi Hamiltonian
structures for integrable lattices, Phys. Lett. A, 2000,
V.272, 236-244,
nlin.SI/0006045.
- Fernandes R.L.,
On the master symmetries and bi-Hamiltonian structure of the Toda
lattice, J. Phys. A: Math. Gen., 1993, V.26, 3797-3803.
- Flaschka H., McLaughlin D.W.,
Canonically conjugate variables for the Korteweg-de Vries
equation and the Toda lattice with periodic boundary conditions,
Progr. Theoret. Phys., 1976, V.55, 438-456.
- Fokas A., Fuchssteiner B.,
Symplectic structures, Bäcklund transformations and hereditary
symmetries, Phys. D, 1981, V.4, 47-66.
- Frölicher A., Nijenhuis A.,
Theory of vector-valued differential forms. I. Derivations of the
graded ring of differential forms, Nederl. Akad. Wetensch.
Proc. Ser. A, 1956, V.59, 338-359.
- Gelfand I.M., Dorfman I.Ya.,
Hamiltonian operators and algebraic structures associated with
them, Funktsional. Anal. i Prilozhen., 1979, V.13, N 4,
13-30.
- Gelfand I.M., Zakharevich I.,
On the local geometry of a bi-Hamiltonian structure, in The
Gelfand Mathematical Seminars 1990-1992, Editors L. Corwin et
al., Boston, Birkhauser, 1993, 51-112.
- Krein M.G., Naimark M.A.,
The method of symmetric and Hermitian forms in the theory of the
separation of the roots of algebraic equations, Linear and
Multilinear Algebra, 1981, V.10, N 4, 265-308 (translated from
the Russian by O. Boshko and J.L. Howland).
- Kosmann-Schwarzbach Y., Magri F.,
Poisson-Nijenhuis structures, Ann. Inst. Poincaré
(Phys. Theor.), 1990, V.53, 35-81.
- Komarov I.V., Tsiganov A.V.,
Two particle quantum periodic Toda lattice, Vestnik Leningrad
Univ., 1988, V.2, 69-71.
- Levi-Civita T.,
Integrazione delle equazione di Hamilton-Jacobi per separazione
di variabili, Math. Ann., 1904, V.24, 383-397.
- Magri F.,
Geometry and soliton equations, in La Mécanique
Analytique de Lagrange et son héritage, Atti Acc. Sci. Torino Suppl., 1990, V.24, 181-209.
- Magri F.,
Eight lectures on integrable systems, in Integrability of
Nonlinear Systems (1996, Pondicherry), Lecture Notes in
Phys., Vol. 495, Berlin, Springer, 1997, 256-296.
- Moser J.,
Finitely many mass points on the line under the influence of an
exponential potential - an integrable system, in Dynamical
Systems, Theory and Applications (1974, Rencontres, BattelleRes.
Inst., Seattle, Wash.), Lecture Notes in Phys., Vol. 38,
Berlin, Springer, 1975, 467-497.
- Sklyanin E.K.,
The quantum Toda chain, in Nonlinear Equations in Classical and
Quantum Field Theory (1983/1984, Meudon/Paris), Lecture Notes
in Phys., Vol. 226, Berlin, Springer, 1985, 196-293.
- Sklyanin E.K.,
Separation of variables - new trends, in Quantum Field Theory,
Integrable Models and Beyond (1994, Kyoto),
Progr. Theoret. Phys. Suppl., 1995, V.118, 35-60,
solv-int/9504001.
- Smirnov F.A.,
Structure of matrix elements in quantum Toda chain, J. Phys.
A: Math. Gen., 1998, V.31, 8953-8971,
math-ph/9805011.
- Stieltjes T.,
Recherches sur les fractions continues, Ann. de Toulouse,
VIII-IX, 1894-1895.
- Tsiganov A.V., On the invariant separated variables, Regul.
Chaotic Dyn., 2001, V.6, 307-326.
- Tsiganov A.V., On the Darboux-Nijenhuis coordinates for the
generalizaed open Toda lattices, Theoret. and Math. Phys.,
submitted.
- Vaninsky K.L.,
The Atiyah-Hitchin bracket and the open Toda Lattice,
J. Geom. Phys., 2003, V.46, 283-307, math-ph/0202047.
|
|