|
SIGMA 3 (2007), 007, 16 pages math-ph/0610048
https://doi.org/10.3842/SIGMA.2007.007
Contribution to the Vadim Kuznetsov Memorial Issue
Multi-Hamiltonian Structures on Beauville's Integrable System and Its Variant
Rei Inoue a and Yukiko Konishi b
a) Department of Physics, Graduate School of Science,
The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
b) Graduate School of Mathematical Sciences, The University of Tokyo,
3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan
Received October 24, 2006, in final form December 29, 2006; Published online January 08, 2007
Abstract
We study Beauville's completely integrable
system and its variant from a viewpoint of multi-Hamiltonian structures.
We also relate our result to the previously known Poisson structures
on the Mumford system and the even Mumford system.
Key words:
completely integrable system; Mumford system; multi-Hamiltonian structure.
pdf (291 kb)
ps (206 kb)
tex (18 kb)
References
- Beauville A.,
Jacobiennes des courbes spectrales et systèmes hamiltoniens complètement intégrables,
Acta Math. 164 (1990), 211-235.
- Donagi R., Markman E.,
Spectral covers, algebraically completely integrable, Hamiltonian systems, and moduli of bundles,
Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 1-119.
- Fernandes R.L., Vanhaecke P.,
Hyperelliptic Prym varieties and integrable systems,
Comm. Math. Phys. 221 (2001), 169-196, math-ph/0011051.
- Fu B.,
Champs de vecteurs invariants par translation sur les
jacobiennes affines des courbes spectrales,
C. R. Math. Acad. Sci. Paris 337 (2003), no. 2, 105-110.
- Inoue R., Konishi Y., Yamazaki T.,
Jacobian variety and integrable system - after Mumford, Baeuville
and Vanhaecke,
J. Phys. Geom., to appear, math-ph/0512033.
- Mumford D., Tata lectures on theta II, Birkhäuser, 1984.
- Nakayashiki A., Smirnov F.A.,
Cohomologies of affine Jacobi varieties and integrable systems,
Comm. Math. Phys. 217 (2001), 623-652,
math-ph/0001017.
- Pendroni M., Vanhaecke P.,
A Lie algebraic generalization of the Mumford system, its symmetries and
its multi-Hamiltonian structure,
Regul. Chaotic Dyn. 3 (1998), 132-160.
- Reyman A.G., Semenov-Tian-Shansky M.A.,
Group-theoretical methods in the theory of finite-dimensional
integrable systems,
Encyclopedia of Mathematical Sciences, Vol. 16,
Springer-Verlag, Berlin Heidelgerg, 1994, 116-225.
- Smirnov F.A., Zeitlin V.,
Affine Jacobi varieties of spectral curves and integrable models,
math-ph/0203037.
- Vanhaecke P.,
Linearising two-dimensional integrable systems and the construction of action-angle variables,
Math. Z. 211 (1992), 265-313.
- Vanhaecke P.,
Integrable systems in the realm of algebraic geometry,
Lecture Notes in Math., Vol. 1638, Springer, Berlin, 2001.
|
|