|
SIGMA 3 (2007), 008, 13 pages math.QA/0610322
https://doi.org/10.3842/SIGMA.2007.008
Contribution to the Proceedings of the O'Raifeartaigh Symposium
The Virasoro Algebra and Some Exceptional Lie and Finite Groups
Michael P. Tuite
Department of Mathematical Physics, National University of Ireland, Galway, Ireland
Received October 09, 2006, in final form December
16, 2006; Published online January 08, 2007
Abstract
We describe a number of relationships between properties of the vacuum Verma
module of a Virasoro algebra and the automorphism group of certain vertex
operator algebras. These groups include the Deligne exceptional series of
simple Lie groups and some exceptional finite simple groups including the
Monster and Baby Monster.
Key words:
vertex operator algebras; Virasoro algebras; Deligne exceptional series; Monster group.
pdf (255 kb)
ps (177 kb)
tex (15 kb)
References
- Borcherds R., Vertex algebras, Kac-Moody algebras and the
Monster, Proc. Natl. Acad. Sci. USA 83 (1986), 3068-3071.
- Deligne P., La série exceptionnelle de groupes de Lie (The
exceptional series of Lie groups), C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 321-326.
- Dong C., Mason G., Holomorphic vertex operator algebras of
small central charge, Pacific J. Math. 213 (2004), 253-266,
math.QA/0203005.
- Frenkel I., Huang Y-Z., Lepowsky J., On axiomatic
approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), no. 494.
- Frenkel I., Lepowsky J., Meurman A., Vertex
operator algebras and the Monster, Academic Press, New York, 1988.
- Griess R.L., The vertex operator algebra related to E8
with automorphism group O+(10,2), in The Monster and Lie
algebras (1996, Columbus, Ohio State University),
Math. Res. Inst. Public., Vol. 7, de Gruyter, Berlin, 1998.
- Hoehn G., Selbstduale Vertexoperatorsuperalgebren und das
Babymonster, PhD Thesis, Bonn. Math. Sch. 286 (1996), 1-85.
- Kac V., Vertex operator algebras for beginners,
University Lecture Series, Vol. 10, AMS, Boston, 1998.
- Kac V., Raina A.K., Bombay lectures on highest
weight representations of infinite dimensional Lie algebras, World Scientific, Singapore,
1987.
- Li H., Symmetric invariant bilinear forms on vertex operator
algebras, J. Pure Appl. Algebra 96 (1994), 279-297.
- Matsuo A., Norton's trace formula for the Griess algebra of a
vertex operator algebra with large symmetry, Comm. Math. Phys. 224 (2001),
565-591, math.QA/0007169.
- Maruoka H., Matsuo A., Shimakura H., Trace formulas for
representations of simple Lie algebras via vertex operator algebras,
2005, unpublished preprint.
- Matsuo A., Nagatomo K., Axioms for a vertex algebra and the
locality of quantum fields,
MSJ Memoirs, Vol. 4, Tokyo, Mathematical Society of Japan,
1999, hep-th/9706118.
- Schellekens A.N., Meromorphic C = 24 conformal field theories,
Comm. Math. Phys. 153 (1993), 159-185, hep-th/9205072.
- Tuite M.P., to appear.
|
|