Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 3 (2007), 012, 18 pages      hep-th/0610197      https://doi.org/10.3842/SIGMA.2007.012
Contribution to the Proceedings of the O'Raifeartaigh Symposium

Boundary Liouville Theory: Hamiltonian Description and Quantization

Harald Dorn a and George Jorjadze b
a) Institut für Physik der Humboldt-Universität zu Berlin, Newtonstraße 15, D-12489 Berlin, Germany
b) Razmadze Mathematical Institute, M. Aleksidze 1, 0193, Tbilisi, Georgia

Received October 17, 2006, in final form December 11, 2006; Published online January 12, 2007

Abstract
The paper is devoted to the Hamiltonian treatment of classical and quantum properties of Liouville field theory on a timelike strip in 2d Minkowski space. We give a complete description of classical solutions regular in the interior of the strip and obeying constant conformally invariant conditions on both boundaries. Depending on the values of the two boundary parameters these solutions may have different monodromy properties and are related to bound or scattering states. By Bohr-Sommerfeld quantization we find the quasiclassical discrete energy spectrum for the bound states in agreement with the corresponding limit of spectral data obtained previously by conformal bootstrap methods in Euclidean space. The full quantum version of the special vertex operator e in terms of free field exponentials is constructed in the hyperbolic sector.

Key words: duality; modular symmetry; supersymmetry; quantum Hall effect.

pdf (316 kb)   ps (250 kb)   tex (43 kb)

References

  1. Zamolodchikov A.B., Zamolodchikov Al.B., Liouville field theory on a pseudosphere, hep-th/0101152.
  2. Fateev V., Zamolodchikov A.B., Zamolodchikov Al.B., Boundary Liouville field theory. I. Boundary state and boundary two-point function, hep-th/0001012.
  3. Teschner J., Remarks on Liouville theory with boundary, hep-th/0009138.
  4. Martinec E.J., The annular report on non-critical string theory, hep-th/0305148.
  5. Gervais J.L., Neveu A., The dual string spectrum in Polyakov's quantization. I, Nuclear Phys. B 199 (1982), 59-76.
  6. Gervais J.L., Neveu A., Dual string spectrum in Polyakov's quantization. II. Mode separation, Nuclear Phys. B 209 (1982), 125-145.
  7. Gervais J.L., Neveu A., Novel triangle relation and absence of tachyons in Liouville string field theory, Nuclear Phys. B 238 (1984), 125-141.
  8. Gervais J.L., Neveu A., Green functions and scattering amplitudes in Liouville string field theory. I, Nuclear Phys. B 238 (1984), 396-406.
  9. Cremmer E., Gervais J.L., The quantum strip: Liouville theory for open strings, Comm. Math. Phys. 144 (1992), 279-302.
  10. Balog J., Feher L., Palla L., Coadjoint orbits of the Virasoro algebra and the global Liouville equation, Internat. J. Modern Phys. A 13 (1998), 315-362, hep-th/9703045.
  11. Curtright T.L., Thorn C.B., Conformally invariant quantization of the Liouville theory, Phys. Rev. Lett. 48 (1982), 1309-1313, Erratum, Phys. Rev. Lett. 48 (1982), 1768-1768.
  12. Braaten E, Curtright T.L., Thorn C.B., An exact operator solution of the quantum Liouville field theory, Ann. Physics 147 (1983), 365-416.
  13. Otto H.J., Weigt G., Construction of exponential Liouville field operators for closed string models, Z. Phys. C 31 (1986), 219-228.
  14. Teschner J., Liouville theory revisited, Classical Quantum Gravity 18 (2001), 153-222, hep-th/0104158.
  15. Jorjadze G., Weigt G., Poisson structure and Moyal quantisation of the Liouville theory, Nuclear Phys. B 619 (2001), 232-256, hep-th/0105306.
  16. Alekseev A., Shatashvili S.L., From geometric quantization to conformal field theory, Comm. Math. Phys. 128 (1990), 197-212.
  17. Jorjadze G., Weigt G., Correlation functions and vertex operators of Liouville theory, Phys. Lett. B 581 (2004), 133-140, hep-th/0311202.
  18. Nakayama Y., Liouville field theory: A decade after the revolution, Internat. J. Modern Phys. A 19 (2004), 2771-2930, hep-th/0402009.
  19. Ford C., Jorjadze G., A causal algebra for Liouville exponentials, Classical Quantum Gravity 23 (2006), 6007-6014, hep-th/0512018.


Previous article   Next article   Contents of Volume 3 (2007)