Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 3 (2007), 017, 14 pages      math-ph/0702032      https://doi.org/10.3842/SIGMA.2007.017
Contribution to the Vadim Kuznetsov Memorial Issue

Separation of Variables and the Geometry of Jacobians

Jacques Hurtubise
Department of Mathematics and Statistics, McGill University, 805 Sherbrooke St. W. Montreal H3A 2K6, Canada

Received November 17, 2006, in final form January 08, 2007; Published online February 05, 2007

Abstract
This survey examines separation of variables for algebraically integrable Hamiltonian systems whose tori are Jacobians of Riemann surfaces. For these cases there is a natural class of systems which admit separations in a nice geometric sense. This class includes many of the well-known cases.

Key words: separation of variables; integrable Hamiltonian systems; geometry of Jacobians.

pdf (258 kb)   ps (183 kb)   tex (20 kb)

References

  1. Adams M.R., Harnad J., Hurtubise J., Isospectral Hamiltonian flows in finite and infinite dimensions. II. Integration of flows, Comm. Math. Phys. 134 (1990), 555-585.
  2. Adams M.R., Harnad J., Hurtubise J., Darboux coordinates and Liouville-Arnold integration in loop algebras, Comm. Math. Phys. 155 (1993), 385-413, hep-th/9210089.
  3. Adams M.R., Harnad J., Previato E., Isospectral Hamiltonian flows in finite and infinite dimensions. I. Generalised Moser systems and moment maps into loop algebras, Comm. Math. Phys. 117 (1988), 451-500.
  4. Atiyah M.F., Vector bundles over an elliptic curve, Proc. London Math. Soc. 7 (1957), 414-452.
  5. Adler M., van Moerbeke P., Completely integrable systems, Euclidean Lie algebras, and curves, Adv. Math. 38 (1980), 267-317.
  6. Adler M., van Moerbeke P., Linearization of Hamiltonian systems, Jacobi varieties and representation theory, Adv. Math. 38 (1980), 318-379.
  7. Adler M., van Moerbeke P., The complex geometry of the Kowalewski-Painlevé analysis, Invent. Math. 97 (1989), 1-46.
  8. Bartocci C., Falqui G., Pedroni M., A geometric approach to the separability of the Neumann-Rosochatius system, Differential Geom. Appl. 21 (2004), 349-360, nlin.SI/0307021.
  9. Bottacin F., Symplectic geometry on moduli spaces of stable pairs, Ann. Sci. École Norm. Sup. (4) 28 (1995), 391-433.
  10. Bottacin F., Poisson structures on moduli spaces of sheaves over Poisson surfaces, Invent. Math. 121 (1995), 421-436.
  11. Donagi R., Spectral covers, in Current Topics in Complex Algebraic Geometry (Berkeley, CA 1992/93), Math. Sci. Res. Inst. Publ. 28 (1995), 65-86, alg-geom/9505009.
  12. Donagi R., Markman E., Spectral curves, algebraically completely integrable Hamiltonian systems, and moduli of bundles, Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 1-119, alg-geom/9507017.
  13. Donagi R., Markman E., Cubics, integrable systems, and Calabi-Yau threefolds, Israel Math. Conf. Proc. 9 (1996), 119-121, alg-geom/9408004.
  14. Etingof P., Schiffmann O., Twisted traces of intertwiners for Kac-Moody algebras and classical dynamical R-matrices corresponding to generalized Belavin-Drinfeld triples, Math. Res. Lett. 6 (1999), 593-612, math.QA/9908115.
  15. Etingof P., Varchenko A., Geometry and classification of solutions of the classical dynamical Yang-Baxter equation, Comm. Math. Phys. 192 (1998), 77-120, q-alg/9703040.
  16. Faltings G., Stable G-bundles and projective connections, J. Algebraic Geom. 2 (1993), 507-568.
  17. Felder G., Conformal field theory and integrable systems associated to elliptic curves, in Proceedings of the International Congress of Mathematicians (1994), Vol. 1, 2, Birkhäuser, Basel, 1995, 1247-1255, hep-th/9407154.
  18. Falqui G., Pedroni M., Separation of variables for bi-Hamiltonian systems, Math. Phys. Anal. Geom. 6 (2003), 139-179, nlin.SI/0204029.
  19. Faddeev L.D., Takhtajan L.A., Hamiltonian methods in the theory of solitons, Springer-Verlag, Berlin, 1987.
  20. Garnier R., Sur une classe de systèmes différentiels abéliens déduits de la théorie des équations linéaires, Rend. Circ. Mat. Palermo 43 (1919), 155-191.
  21. Gorsky A., Nekrasov N., Rubtsov V., Hilbert schemes, separated variables, and D-branes, Comm. Math. Phys. 222 (2001), 299-318, hep-th/9901089.
  22. Grothendieck A., Sur le mémoire de Weil: généralisations de fonctions abéliennes, Séminaire Bourbaki (1956-57) 9 (1959), Exposé no. 141.
  23. Harnad J., Hurtubise J., Generalised tops and moment maps into loop algebras, J. Math. Phys. 37 (1991), 1780-1787.
  24. Harnad J., Hurtubise J., Multi-Hamiltonian structures for r-matrix systems, CRM Preprint 2850, math-ph/0211076.
  25. Hitchin N.J., The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987), 59-126.
  26. Hitchin N.J., Stable bundles and integrable systems, Duke Math. J. 54 (1987), 91-114.
  27. Hurtubise J., Integrable systems and algebraic surfaces, Duke Math. J. 83 (1996), 19-50.
  28. Hurtubise J., Kjiri M., Separating coordinates for the generalized Hitchin systems and the classical r-matrices, Comm. Math. Phys. 210 (2000), 521-540.
  29. Hurtubise J., Markman E., Rank 2 integrable systems of Prym varieties, Adv. Theor. Math. Phys. 2 (1998), 633-695, math.AG/9804059.
  30. Hurtubise J., Markman E., Surfaces and the Sklyanin bracket, Comm. Math. Phys. 230 (2002), 485-502, math.AG/0107010.
  31. Hurtubise J., Markman E., Elliptic Sklyanin integrable systems for arbitrary reductive groups, Adv. Theor. Math. Phys. 6 (2002), 873-978, math.AG/0203031.
  32. Krichever I.M., Phong D.H., On the integrable geometry of soliton equations and N = 2 supersymmetric gauge theories, J. Differential Geom. 45 (1997), 349-389, hep-th/9604199.
  33. Markman E., Spectral curves and integrable systems, Compos. Math. 93 (1994), 255-290.
  34. Mukai S., Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math. 77 (1984), 101-116.
  35. Novikov S.P., Veselov A.P., Poisson brackets and complex tori, Proc. Steklov Inst. Math. 165 (1984), 53-65.
  36. Reiman A.G., Semenov-Tian-Shansky M.A., Reduction of Hamiltonian systems, affine Lie algebras and Lax equations I, II, Invent. Math. 54 (1979), 81-100, Invent. Math. 63 (1981), 423-432.
  37. Reiman A.G., Semenov-Tian-Shansky M.A., Integrable systems II, Chapter 2, in Dynamical Systems VII, Encyclopaedia Math. Sci., Vol. 16, Editors V.I. Arnold and S.P. Novikov, Springer-Verlag, Berlin, 1994.
  38. Scott D.R.D., Classical functional Bethe ansatz for SL(N): separation of variables for the magnetic chain, J. Math. Phys. 35 (1994), 5831-5843, hep-th/9403030.
  39. Scognamillo R., An elementary approach to the abelianization of the Hitchin system for arbitrary reductive groups, Compos. Math. 110 (1998), 17-37, alg-geom/9412020.
  40. Sklyanin E.K., On the complete integrability of the Landau-Lifschitz equation, LOMI Preprint E-3-79, 1979.
  41. Sklyanin E.K., Poisson structure of a periodic classical XYZ-chain, J. Sov. Math. 46 (1989), 1664-1683.
  42. Tyurin A., Symplectic structures on the varieties of moduli of vector bundles on algebraic surfaces with pg > 0, Math. USSR-Izv. 33 (1989), no. 1, 139-177.
  43. Vanhaecke P., Integrable Hamiltonian systems associated to families of curves and their bi-Hamiltonian structure, Progr. Math., Birkhäuser, "Systèmes intégrables et feuilletages", 1997, 187-212.
  44. Vanhaecke P., Integrable systems and symmetric products of curves, Math. Z. 227 (1998), 93-127, solv-int/9402002.


Previous article   Next article   Contents of Volume 3 (2007)