|
SIGMA 3 (2007), 017, 14 pages math-ph/0702032
https://doi.org/10.3842/SIGMA.2007.017
Contribution to the Vadim Kuznetsov Memorial Issue
Separation of Variables and the Geometry of Jacobians
Jacques Hurtubise
Department of Mathematics and Statistics, McGill University, 805 Sherbrooke St. W. Montreal H3A 2K6, Canada
Received November 17, 2006, in final form January 08, 2007; Published online February 05, 2007
Abstract
This survey examines separation of variables for
algebraically integrable Hamiltonian systems whose tori are
Jacobians of Riemann surfaces. For these cases there is a natural
class of systems which admit separations in a nice geometric
sense. This class includes many of the well-known cases.
Key words:
separation of variables; integrable Hamiltonian systems; geometry of Jacobians.
pdf (258 kb)
ps (183 kb)
tex (20 kb)
References
- Adams M.R., Harnad J., Hurtubise J., Isospectral Hamiltonian
flows in finite and infinite dimensions. II. Integration of
flows, Comm. Math. Phys. 134 (1990), 555-585.
- Adams M.R., Harnad J., Hurtubise J., Darboux coordinates and
Liouville-Arnold integration in loop algebras, Comm. Math.
Phys. 155 (1993), 385-413,
hep-th/9210089.
- Adams M.R., Harnad J., Previato E., Isospectral Hamiltonian
flows in finite and infinite dimensions. I. Generalised
Moser systems and moment maps into loop algebras, Comm. Math.
Phys. 117 (1988), 451-500.
- Atiyah M.F.,
Vector bundles over an elliptic curve, Proc. London Math.
Soc. 7 (1957), 414-452.
- Adler M., van Moerbeke P., Completely integrable systems,
Euclidean Lie algebras, and curves, Adv. Math. 38
(1980), 267-317.
- Adler M., van Moerbeke P., Linearization of Hamiltonian systems, Jacobi varieties and
representation theory, Adv. Math. 38 (1980), 318-379.
- Adler M., van Moerbeke P., The complex geometry of the
Kowalewski-Painlevé analysis, Invent. Math. 97
(1989), 1-46.
- Bartocci C., Falqui G., Pedroni M.,
A geometric approach to the separability of the
Neumann-Rosochatius system, Differential Geom. Appl.
21 (2004), 349-360,
nlin.SI/0307021.
- Bottacin F., Symplectic geometry on moduli spaces of stable pairs,
Ann. Sci. École Norm. Sup. (4) 28 (1995),
391-433.
- Bottacin F.,
Poisson structures on moduli spaces of sheaves over Poisson
surfaces, Invent. Math. 121 (1995), 421-436.
- Donagi R., Spectral covers, in
Current Topics in Complex Algebraic Geometry (Berkeley, CA
1992/93), Math. Sci. Res. Inst. Publ. 28 (1995),
65-86,
alg-geom/9505009.
- Donagi R., Markman E., Spectral curves,
algebraically completely integrable Hamiltonian systems, and
moduli of bundles, Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996,
1-119,
alg-geom/9507017.
- Donagi R., Markman E.,
Cubics, integrable systems, and Calabi-Yau threefolds,
Israel Math. Conf. Proc. 9 (1996), 119-121,
alg-geom/9408004.
- Etingof P., Schiffmann O.,
Twisted traces of intertwiners for
Kac-Moody algebras and classical dynamical R-matrices
corresponding to generalized Belavin-Drinfeld triples, Math.
Res. Lett. 6 (1999), 593-612,
math.QA/9908115.
- Etingof P., Varchenko A.,
Geometry and classification of solutions of the classical
dynamical Yang-Baxter equation, Comm. Math. Phys. 192
(1998), 77-120,
q-alg/9703040.
- Faltings G., Stable G-bundles and projective connections,
J. Algebraic Geom. 2 (1993), 507-568.
- Felder G., Conformal field theory and integrable systems
associated to elliptic curves,
in Proceedings of the International Congress of Mathematicians (1994), Vol. 1, 2,
Birkhäuser, Basel, 1995, 1247-1255,
hep-th/9407154.
- Falqui G., Pedroni M.,
Separation of variables for bi-Hamiltonian systems, Math.
Phys. Anal. Geom. 6 (2003), 139-179,
nlin.SI/0204029.
- Faddeev L.D., Takhtajan L.A., Hamiltonian methods in the theory
of solitons, Springer-Verlag, Berlin, 1987.
- Garnier R., Sur une classe de systèmes différentiels
abéliens déduits de la théorie des équations linéaires,
Rend. Circ. Mat. Palermo 43 (1919), 155-191.
- Gorsky A., Nekrasov N., Rubtsov V.,
Hilbert schemes, separated variables, and D-branes, Comm.
Math. Phys. 222 (2001), 299-318,
hep-th/9901089.
- Grothendieck A., Sur le mémoire de Weil:
généralisations de fonctions abéliennes, Séminaire
Bourbaki (1956-57) 9 (1959), Exposé no. 141.
- Harnad J., Hurtubise J.,
Generalised tops and moment maps into loop algebras,
J. Math. Phys. 37 (1991), 1780-1787.
- Harnad J., Hurtubise J., Multi-Hamiltonian structures
for r-matrix systems, CRM Preprint 2850,
math-ph/0211076.
- Hitchin N.J.,
The self-duality equations on a Riemann surface, Proc. London
Math. Soc. 55 (1987), 59-126.
- Hitchin N.J.,
Stable bundles and integrable systems, Duke Math. J.
54 (1987), 91-114.
- Hurtubise J.,
Integrable systems and algebraic surfaces, Duke Math. J.
83 (1996), 19-50.
- Hurtubise J., Kjiri M., Separating coordinates for the
generalized Hitchin systems and the classical r-matrices,
Comm. Math. Phys. 210 (2000), 521-540.
- Hurtubise J., Markman E., Rank 2 integrable systems of Prym
varieties, Adv. Theor. Math. Phys. 2 (1998),
633-695,
math.AG/9804059.
- Hurtubise J., Markman E., Surfaces and the Sklyanin bracket,
Comm. Math. Phys. 230 (2002), 485-502,
math.AG/0107010.
- Hurtubise J., Markman E.,
Elliptic Sklyanin integrable systems for arbitrary reductive groups,
Adv. Theor. Math. Phys. 6 (2002), 873-978,
math.AG/0203031.
- Krichever I.M., Phong D.H., On the integrable geometry of
soliton equations and N = 2 supersymmetric gauge theories, J.
Differential Geom. 45 (1997), 349-389,
hep-th/9604199.
- Markman E.,
Spectral curves and integrable systems, Compos. Math.
93 (1994), 255-290.
- Mukai S.,
Symplectic structure of the moduli space of sheaves on an abelian
or K3 surface, Invent. Math. 77 (1984), 101-116.
- Novikov S.P., Veselov A.P., Poisson brackets and complex tori,
Proc. Steklov Inst. Math. 165 (1984), 53-65.
- Reiman A.G., Semenov-Tian-Shansky M.A., Reduction of Hamiltonian
systems, affine Lie algebras and Lax equations I, II,
Invent. Math. 54 (1979), 81-100, Invent. Math.
63 (1981),
423-432.
- Reiman A.G., Semenov-Tian-Shansky M.A.,
Integrable systems II, Chapter 2, in Dynamical Systems VII,
Encyclopaedia Math. Sci., Vol. 16, Editors V.I. Arnold and
S.P. Novikov, Springer-Verlag, Berlin, 1994.
- Scott D.R.D., Classical functional Bethe ansatz for SL(N):
separation of variables for the magnetic chain, J. Math.
Phys. 35 (1994), 5831-5843,
hep-th/9403030.
- Scognamillo R., An elementary approach to the abelianization of
the Hitchin system for arbitrary reductive groups, Compos.
Math. 110 (1998), 17-37,
alg-geom/9412020.
- Sklyanin E.K.,
On the complete integrability of the Landau-Lifschitz equation,
LOMI Preprint E-3-79, 1979.
- Sklyanin E.K., Poisson structure of a periodic classical
XYZ-chain, J. Sov. Math. 46 (1989), 1664-1683.
- Tyurin A.,
Symplectic structures on the varieties of moduli of vector bundles
on algebraic surfaces with pg > 0, Math. USSR-Izv.
33 (1989), no. 1, 139-177.
- Vanhaecke P., Integrable Hamiltonian systems associated
to families of curves and their bi-Hamiltonian structure,
Progr. Math., Birkhäuser, "Systèmes intégrables et
feuilletages", 1997, 187-212.
- Vanhaecke P., Integrable systems and symmetric products
of curves, Math. Z. 227 (1998), 93-127,
solv-int/9402002.
|
|