|
SIGMA 3 (2007), 021, 21 pages nlin.SI/0612042
https://doi.org/10.3842/SIGMA.2007.021
Contribution to the Vadim Kuznetsov Memorial Issue
Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds
Claudia Chanu and Giovanni Rastelli
Dipartimento di Matematica, Università di Torino, Via
Carlo Alberto 10, 10123 Torino, Italy
Received November 02, 2006, in final form January 16, 2007; Published online February 06, 2007
Abstract
Given a n-dimensional Riemannian manifold of arbitrary
signature, we illustrate an algebraic method for constructing the
coordinate webs separating the geodesic Hamilton-Jacobi equation
by means of the eigenvalues of m ≤ n Killing two-tensors.
Moreover, from the analysis of the eigenvalues, information about
the possible symmetries of the web foliations arises. Three cases
are examined: the orthogonal separation, the general separation,
including non-orthogonal and isotropic coordinates, and the
conformal separation, where Killing tensors are replaced by
conformal Killing tensors. The method is illustrated by several
examples and an application to the L-systems is provided.
Key words:
variable separation; Hamilton-Jacobi equation; Killing tensors; (pseudo-)Riemannian manifolds.
pdf (339 kb)
ps (211 kb)
tex (25 kb)
References
- Benenti S., Separability structures on Riemannian manifolds,
Lecture Notes in Math. 863 (1980), 512-538.
- Benenti S., Separation of variables in the geodesic
Hamilton-Jacobi equation, Progr. Math. 9 (1991),
1-36.
- Benenti S., Inertia tensors and Stäckel systems in the
Euclidean spaces, Rend. Semin. Mat. Univ. Polit. Torino
50 (1992), 315-341.
- Benenti S., Intrinsic characterization of the variable separation
in the Hamilton-Jacobi equation, J. Math. Phys. 38
(1997), 6578-6602.
- Benenti S., Separability in Riemannian
manifolds, Phil. Trans. Roy. Soc. A, to appear.
- Benenti S., Chanu C., Rastelli G.,
Remarks on the connection between the additive separation of the Hamilton-Jacobi equation and the multiplicative separation of the Schroedinger equation. 1. The completeness and the Robertson conditions,
J. Math. Phys. 43 (2002), 5183-5222.
- Benenti S., Chanu C., Rastelli G., Variable separation theory for
the null Hamilton-Jacobi equation, J. Math. Phys. 46
(2005), 042901, 29 pages.
- Blaszak M., Separable bi-Hamiltonian systems with quadratic in momenta first integrals,
J. Phys. A: Math. Gen. 38 (2005), 1667-1685.
nlin.SI/0312025.
- Bolsinov A.V., Matveev V.S., Geometrical interpretation of Benenti systems,
J. Geom. Phys. 44 (2003), 489-506.
- Chanachowicz M., Chanu C., McLenaghan R.G., Invariant
classification of the symmetric R-separable webs in E3, in progress.
- Chanu C., Rastelli G., Eigenvalues of Killing tensors and
orthogonal separable webs, in Proceedings of the International
Conference STP2002 "Symmetry and Perturbation Theory" (May
19-24, 2002, Cala Gonone), Editors S. Abenda, G. Gaeta and
S. Walcher, World Scietific Publishing, Singapore, 2002, 18-25.
- Chanu C., Rastelli G., Fixed energy R-separation for Schrödinger
equation, Int. J. Geom. Methods Mod. Phys. 3 (2006),
489-508, nlin.SI/0512033.
- Degiovanni L., Rastelli G., Complex variables for separation of
Hamilton-Jacobi equation on real pseudo-Riemannian manifolds,
nlin.SI/0610012.
- Degiovanni L., Rastelli G., Complex variables for separation of
Hamilton-Jacobi equation on three-dimensional Minkowski space,
Int. J. Geom. Methods Mod. Phys., to appear,
nlin.SI/0612051.
- Grigoryev Yu.A., Tsiganov A.V., Symbolic software for separation
of variables in the Hamilton-Jacobi equation for the L-systems,
Regul. Chaotic Dyn. 10 (2005), 413-422,
nlin.SI/0505047.
- Kalnins E.G.,
Separation of variables for Riemannian spaces of constant curvature,
Pitman Monographs and Surveys in P. A. Math., Vol. 28, Longman Scientific and Technical, New York, 1986.
- Kalnins E.G., Miller W.Jr., Killing tensors and variable separation for the Hamilton-Jacobi and Helmholtz equations, SIAM J. Math. Anal. 11 (1980), 1011-1026.
- Kalnins E.G., Miller W.Jr.,
Conformal Killing tensors and variable separation for HJEs,
SIAM J. Math. Anal. 14 (1983), 126-137.
- Kalnins E.G., Miller W.Jr.,
Intrinsic characterisation of orthogonal R-separation for Laplace equation, J. Phys. A: Math. Gen.
15 (1982), 2699-2709.
- Moon P., Spencer D.E.,
Field theory handbook, Springer Verlag, Berlin
1961.
- Rauch-Wojciechowski S., Waksjö C., How to find separation
coordinates for the Hamilton-Jacobi equation: a criterion of
separability for natural Hamiltonian systems, Math. Phys.
Anal. Geom. 6 (2003), 301-348.
|
|