|
SIGMA 3 (2007), 032, 13 pages math-ph/0611045
https://doi.org/10.3842/SIGMA.2007.032
Contribution to the Vadim Kuznetsov Memorial Issue
A Note on the Rotationally Symmetric SO(4) Euler Rigid Body
Gregorio Falqui
Dipartimento di Matematica e Applicazioni, Università di Milano - Bicocca,
via R. Cozzi, 53, 20125 Milano, Italy
Received November 15, 2006, in final form February 02, 2007; Published online February 26, 2007
Abstract
We consider an SO(4) Euler rigid body with two
'inertia momenta' coinciding. We study it from the point of view
of bihamiltonian geometry. We show how to algebraically integrate
it by means of the method of separation of variables.
Key words:
Euler top; separation of variables; bihamiltonian manifolds.
pdf (247 kb)
ps (178 kb)
tex (20 kb)
References
- Adler M., van Moerbeke P.,
Completely integrable systems, Euclidean Lie algebras, and curves,
Adv. Math. 3 (1980), 267-317.
- Audin M., Spinning tops. A course on integrable systems,
Cambridge Studies in Advanced Mathematics, Vol. 51,
Cambridge, 1996.
- Belokolos E., Bobenko A, Enolski V., Its A., Matveev V.,
Algebro-geometric approach to nonlinear integrable equations,
Springer-Verlag, Berlin,
1994.
- Blaszak M., Theory of separability of multi-Hamiltonian chains,
J. Math. Phys. 40 (1999), 5725-5738.
- Bobenko A., Euler equations on the algebras e(3) and so(4). Isomorphism of the integrable cases, Funktsional.
Anal. i Prilozhen. 20 (1986), 64-66.
- Bolsinov A., A criterion for the completeness of a family of
functions in involution that is constructed by the argument
translation method, Soviet Math. Dokl. 38 (1989),
161-165.
- Bolsinov A., Compatible Poisson brackets on Lie algebras and the
completeness of families of functions in involution, Izv.
Akad. Nauk SSSR Ser. Mat. 55 (1991), 68-92.
- Falqui G., Magri F., Tondo G., Bihamiltonian systems and
separation of variables: an example from the Boussinesq
hierarchy, Theoret. and Math. Phys. 122 (2000),
176-192,
solv-int/9906009.
- Falqui G., Poisson pencils, integrability, and separation of
variables, nlin-SI/0310028.
- Falqui G., Pedroni M., Separation of variables for
bi-Hamiltonian systems, Math. Phys. Anal. Geom. 6 (2003), 139-179,
nlin.SI/0204029.
- Gel'fand I.M., Zakharevich I., On the local geometry of a
bi-Hamiltonian structure, in The Gel'fand Mathematical Seminars
1990-1992, Editors L. Corwin et al., Birkhäuser, Boston, 1993,
51-112.
- Gel'fand I.M., Zakharevich I., Webs, Lenard schemes, and the
local geometry of bihamiltonian Toda and Lax structures,
Selecta Math. (N.S.) 6 (2000), 131-183,
math.DG/9903080.
- Kuznetsov V.B., Quadrics on Riemannian spaces of constant
curvature. Separation of variables and a connection with the
Gaudin magnet, Teoret. and Math. Phys. 91 (1992),
385-404.
- Kuznetsov V.B., Simultaneous separation for the Kowalevski and
Goryachev-Chaplygin gyrostats, J. Phys. A: Math. Gen.
35 (2002), 6419-6430,
nlin.SI/0201004.
- Kuznetsov V.B., Nijhoff F.W., Sklyanin E.K., Separation of
variables for the Ruijsenaars system, Comm. Math. Phys.
189 (1997), 855-877,
solv-int/9701004.
- Kuznetsov V.B., Petrera M., Ragnisco O., Separation of variables
and Bäcklund transformations for the symmetric Lagrange top,
J. Phys. A: Math. Gen. 37 (2004), 8495-8512,
nlin.SI/0403028.
- Magri F., Geometry and soliton equations, in
La Mécanique Analytique de Lagrange et son héritage, Atti
Acc. Sci. Torino Suppl. 124 (1990), 181-209.
- Magri F., Lenard chains for classical integrable systems,
Teoret. and Math. Phys. 137 (2003), 1716-1722.
- Manakov S.V., A remark on the integration of the Eulerian
equations of the dynamics of an n-dimensional rigid body,
Funktsional. Anal. i Prilozhen. 10 (1976), 93-94.
- Marikhin V.G., Sokolov V.V.,
Separation of variables on a non-hyperelliptic curve, Regul.
Chaotic Dyn. 10 (2005), 59-70,
nlin.SI/0412065.
- Miscenko A.S., Fomenko A.T., Euler equation on
finite-dimensional Lie groups, Izv. Akad. Nauk SSSR Ser.
Mat. (1978), 396-415.
- Morosi C., Pizzocchero L., On the Euler equation: bi-Hamiltonian
structure and integrals in involution, Lett. Math. Phys.
37 (1996), 117-135.
- Morosi C., Tondo G., Quasi-bi-Hamiltonian systems and
separability, J. Phys. A: Math. Gen. 30 (1997),
2799-2806,
solv-int/9702006.
- Morosi C., Tondo G., The quasi-bi-Hamiltonian formulation
of the Lagrange top, J. Phys. A: Math. Gen. 35 (2002),
1741-1750,
nlin.SI/0201028.
- Ratiu T., Euler-Poisson equations on Lie algebras and the
N-dimensional heavy rigid body, Amer. J. Math.
104 (1982), 409-448.
- Sklyanin E., Takebe T.,
Separation of variables in the elliptic Gaudin model, Comm.
Math. Phys. 204, (1999), 17-38,
solv-int/9807008.
- Veselov A., Novikov S., Poisson brackets and complex tori.
Algebraic geometry and its applications, Tr. Mat. Inst.
Steklova 165 (1984), 49-61.
|
|