|
SIGMA 3 (2007), 034, 6 pages nlin.SI/0702055
https://doi.org/10.3842/SIGMA.2007.034
Contribution to the Proceedings of the Coimbra Workshop on
Geometric Aspects of Integrable Systems
By Magri's Theorem, Self-Dual Gravity is Completely Integrable
Yavuz Nutku
Feza Gürsey Institute, P.O.Box 6, Çengelköy, Istanbul, 81220 Turkey
Received September 08, 2006, in final form February 08, 2007; Published online February 27, 2007
Abstract
By Magri's theorem the bi-Hamiltonian structure of
Plebanski's second heavenly equation proves that (anti)-self-dual
gravity is a completely integrable system in four dimensions.
Key words:
self-dual gravity; Plebanski equation; Magri's theorem.
pdf (158 kb)
ps (120 kb)
tex (9 kb)
References
- Neyzi F., Nutku Y., Sheftel M.B., Multi-Hamiltonian
structure of Plebanski's second heavenly equation, J. Phys. A:
Math. Gen. 38 (2005), 8473-8485, nlin.SI/0505030.
- Magri F., A simple model of the integrable Hamiltonian
equation, J. Math. Phys. 19 (1978), 1156-1162.
- Magri F., A geometrical approach to the nonlinear
solvable equations, in Nonlinear Evolution Equations and Dynamical Systems,
Editors M. Boiti, F. Pempinelli and G. Soliani, Lecture Notes
in Phys., Vol. 120, Springer, New York, 1980, 233-263.
- Plebanski J.F., Some solutions of complex Einstein
equations, J. Math. Phys. 16 (1975), 2395-2402.
- Nutku Y., Halil M., Colliding impulsive gravitational waves, Phys. Rev. Lett. 39 (1977), 1379-1382.
- Nambu Y., Generalized Hamiltonian dynamics,
Phys. Rev. D 7 (1973), 2405-2412.
- Nutku Y., On a new class of completely integrable
nonlinear wave equations. II. Multi-Hamiltonian structure, J. Math. Phys.
28 (1987), 2579-2585.
- Olver P.J., Nutku Y., Hamiltonian structures for systems
of hyperbolic conservation laws, J. Math. Phys. 29 (1988), 1610-1619.
- Calabi E., The space of Kähler metrics, in Proceedings of the
International Congress of Mathematicians (1954, Amsterdam), Vol. 2, North-Holland, Amsterdam, 1956, 206-207.
- Nutku Y., Hamiltonian structure of real Monge-Ampère
equations, J. Phys. A: Math. Gen. 29 (1996), 3257-3280, solv-int/9812023.
- Dirac P.A.M., Lectures on quantum
mechanics, Belfer Graduate School of Science Monographs Series 2,
New York, 1964.
- Malykh A.A., Nutku Y., Sheftel M.B., Partner symmetries
of the complex Monge-Ampère equation yield hyper-Kahler metrics without continuous
symmetries, J. Phys. A: Math. Gen. 36 (2003), 10023-10037, math-ph/0403020.
- Santini P.M., Fokas A.S., Recursion operators and bi-Hamiltonian structures in
multidimensions. I, Comm. Math. Phys. 115 (1988), 375-419.
|
|