|
SIGMA 3 (2007), 037, 17 pages math-ph/0703012
https://doi.org/10.3842/SIGMA.2007.037
Contribution to the Proceedings of the Coimbra Workshop on
Geometric Aspects of Integrable Systems
An Explicit Formula for Symmetric Polynomials Related to the Eigenfunctions of Calogero-Sutherland Models
Martin Hallnäs
Department of Theoretical Physics, Albanova University
Center, SE-106 91 Stockholm, Sweden
Received November 01, 2006, in final form February
05, 2007; Published online March 01, 2007
Abstract
We review a recent construction of an explicit analytic
series representation for symmetric polynomials which up to a
groundstate factor are eigenfunctions of Calogero-Sutherland type
models. We also indicate a generalisation of this result to
polynomials which give the eigenfunctions of so-called 'deformed'
Calogero-Sutherland type models.
Key words:
quantum integrable systems; orthogonal polynomials; symmetric functions.
pdf (287 kb)
ps (189 kb)
tex (19 kb)
References
- Baker T.H., Forrester P.J., The Calogero-Sutherland model
and generalized classical polynomials, Comm. Math. Phys.
188 (1997), 175-216,
solv-int/9608004.
- Calogero F., Groundstate of a one-dimensional
N-body system, J. Math. Phys. 10 (1969),
2197-2200.
- Calogero F., Solution of the one-dimensional N body
problems with quadratic and/or inversely quadratic pair
potentials, J. Math. Phys. 12 (1971), 419-436.
- Chalykh O., Feigin M., Veselov A., New integrable
generalizations of Calogero-Moser quantum problems, J. Math.
Phys. 39 (1998), 695-703.
- Desrosiers P., Lapointe L., Mathieu P., Explicit formulas
for the generalized Hermite polynomials in superspace, J.
Phys. A: Math. Gen. 37 (2004), 1251-1268,
hep-th/0309067.
- Gómez-Ullate D., González-López A.,
Rodríguez M.A., New algebraic quantum many-body problems,
J. Phys. A: Math. Gen. 33 (2000), 7305-7335,
nlin.SI/0003005.
- Hallnäs M., Langmann E., Explicit formulae for
the eigenfunctions of the N-body Calogero model,
J. Phys. A: Math. Gen. 39 (2006), 3511-3533,
math-ph/0511040.
- Hallnäs M., Langmann E., Quantum
Calogero-Sutherland type models and generalised classical polynomials, in preparation.
- Knop F., Sahi S., A recursion and a combinatorial formula
for Jack polynomials, Invent. Math. 128 (1997),
9-22, q-alg/9610016.
- Kuznetsov V.B., Mangazeev V.V., Sklyanin E.K., Q-operator
and factorised separation chain for Jack polynomials, Indag.
Math. (N.S.) 14 (2003), 451-482,
math.CA/0306242.
- Langmann E., Algorithms to solve the (quantum)
Sutherland model, J. Math. Phys. 42 (2001),
4148-4157,
math-ph/0104039.
- Langmann E., A method to derive explicit formulas for
an elliptic generalization of the Jack polynomials, in Proceedings
of the Conference "Jack, Hall-Littlewood and Macdonald
Polynomials" (September 23-26, 2003, Edinburgh), Editors
V.B. Kuznetsov and S. Sahi, Contemp. Math. 417
(2006), 257-270,
math-ph/0511015.
- Lassalle M., Polynômes de Jacobi généralisés,
C. R. Math. Acad. Sci. Paris 312 (1991), 425-428.
- Lassalle M., Polynômes de Laguerre
généralisés, C. R. Math. Acad. Sci. Paris 312
(1991), 725-728.
- Lassalle M., Polynômes de Hermite généralisés,
C. R. Math. Acad. Sci. Paris 313 (1991), 579-582.
- Lassalle M., Schlosser M., Inversion of the Pieri
formula for MacDonald polynomials, Adv. Math. 202
(2006), 289-325,
math.CO/0402127.
- MacDonald I.G., Symmetric functions and Hall
polynomials, 2nd ed., Oxford University Press, 1995.
- MacDonald I.G., Hypergeometric functions, unpublished
manuscript.
- Olshanetsky M.A., Perelomov A.M., Quantum integrable
systems related to Lie algebras, Phys. Rep. 94
(1983), 313-404.
- Reed M., Simon B., Methods of modern mathematical
physics. II. Fourier analysis, self-adjointness, Academic Press,
1975.
- Sergeev A.N., Veselov A.P., Deformed quantum
Calogero-Moser problems and Lie superalgebras, Comm. Math.
Phys. 245 (2004), 249-278,
math-ph/0303025.
- Sergeev A.N., Veselov A.P., Generalised
discriminants, deformed Calogero-Moser-Sutherland operators and
super-Jack polynomials, Adv. Math. 192 (2005),
341-375,
math-ph/0307036.
- Sutherland B., Quantum many-body problem in one
dimension: ground state, J. Math. Phys. 12 (1971),
246-250.
- Sutherland B., Exact results for a quantum many-body
problem in one dimension: II, Phys. Rev. A 5
(1972), 1372-1376.
- Szegö G., Orthogonal polynomials, American Mathematical
Society, 1939.
- van Diejen J.F., Confluent hypergeometric orthogonal
polynomials related to the rational quantum Calogero system with
harmonic confinement, Comm. Math. Phys. 188
(1997), 467-497,
q-alg/9609032.
- Lapointe L., Morse J., van Diejen J.F., Determinantal
construction of orthogonal polynomials associated with root
systems, Compos. Math. 140 (2004), 255-273,
math.CO/0303263.
|
|