|
SIGMA 3 (2007), 038, 17 pages math.CA/0703057
https://doi.org/10.3842/SIGMA.2007.038
Contribution to the Vadim Kuznetsov Memorial Issue
Towards Finite-Gap Integration of the Inozemtsev Model
Kouichi Takemura
Department of Mathematical Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
Received October 31, 2006, in final form February 07, 2007; Published online March 02, 2007
Abstract
The Inozemtsev model is considered to be a multivaluable
generalization of Heun's equation. We review results on Heun's
equation, the elliptic Calogero-Moser-Sutherland model and the
Inozemtsev model, and discuss some approaches to the finite-gap
integration for multivariable models.
Key words:
finite-gap integration; Inozemtsev model; Heun's equation; Darboux transformation.
pdf (315 kb)
ps (210 kb)
tex (21 kb)
References
- Adler M., Kuznetsov V.B., van Moerbeke P., Rational solutions to
the Pfaff lattice and Jack polynomials, Ergodic Theory
Dynam. Systems 22 (2002), 1365-1405,
nlin.SI/0202037.
- Andrianov A.A., Borisov N.V., Ioffe M.V., The factorization
method and the Darboux transformation for multidimensional
Hamiltonians, Theoret. and Math. Phys. 61 (1984),
1078-1088.
- Aoyama H., Sato M., Tanaka T., N-fold supersymmetry
in quantum mechanics: general formalism, Nuclear Phys. B
619 (2001), 105-127,
quant-ph/0106037.
- Braverman A., Etingof P., Gaitsgory D., Quantum integrable systems
and differential Galois theory, Transfor. Groups 2
(1997), 31-57,
alg-geom/9607012.
- Chalykh O.A., Darboux transformations for multidimensional
Schrödinger operators, Russian Math. Surveys 53
(1998), no. 2, 167-168.
- Chalykh O.A., Etingof P., Oblomkov A., Generalized Lamé
operators, Comm. Math. Phys. 239 (2003), 115-153,
math.QA/0212029.
- Chalykh O.A., Veselov A.P., Commutative rings of partial
differential operators and Lie algebras, Comm. Math. Phys.
126 (1990), 597-611.
- Chalykh O.A., Veselov A.P., Integrability in the theory of
Schrödinger operator and harmonic analysis, Comm. Math.
Phys. 152 (1993), 29-40.
- Dittrich J., Inozemtsev V.I., On the structure of eigenvectors of
the multidimensional Lamé operator, J. Phys. A: Math. Gen.
26 (1993), L753-L756.
- Dubrovin B.A., Matveev V.B., Novikov S.P., Nonlinear equations of
Korteweg-de Vries type, finite-band linear operators and
Abelian varieties, Russian Math. Surveys 31 (1976),
59-146.
- Felder G., Rimanyi R., Varchenko A., Poincare-Birkhoff-Witt
expansions of the canonical elliptic differential form,
math.RT/0502296.
- Felder G., Varchenko A., Integral representation of solutions of
the elliptic Knizhnik-Zamolodchikov-Bernard equations, Int.
Math. Res. Not. (1995), no. 5, 221-233,
hep-th/9502165.
- Felder G., Varchenko A., Three formulae for eigenfunctions of
integrable Schrödinger operator, Compos. Math. 107
(1997), 143-175,
hep-th/9511120.
- Fernandez N.J., Garcia F.W., Perelomov A.M., A perturbative
approach to the quantum elliptic Calogero-Sutherland model,
Phys. Lett. A 307 (2003), 233-238,
math-ph/0205042.
- Finkel F., Gomez-Ullate D., Gonzalez-Lopez A., Rodriguez M.A.,
Zhdanov R., AN-type Dunkl operators and new spin
Calogero-Sutherland models, Comm. Math. Phys. 221
(2001), 477-497,
hep-th/0102039.
- Finkel F., Gomez-Ullate D., Gonzalez-Lopez A., Rodriguez M.A.,
Zhdanov R.,
New spin Calogero-Sutherland models related to BN-type Dunkl operators, Nuclear Phys. B
613 (2001), 472-496, hep-th/0103190.
- Gesztesy F., Weikard R., Treibich-Verdier potentials and the
stationary (m)KdV hierarchy, Math. Z. 219 (1995),
451-476.
- Gonzalez-Lopez A., Kamran N., The multidimensional Darboux
transformation, J. Geom. Phys. 26 (1998), 202-226,
hep-th/9612100.
- Ince E.L., Further investigations into the periodic Lamé
functions, Proc. Roy. Soc. Edinburgh 60 (1940),
83-99.
- Inozemtsev V.I., Lax representation with spectral parameter on a
torus for integrable particle systems, Lett. Math. Phys.
17 (1989), 11-17.
- Khodarinova L.A., Prikhodsky I.A., Algebraic spectral relations
for elliptic quantum Calogero-Moser problems, J. Nonlinear
Math. Phys. 6 (1999), 263-268,
math-ph/0406050.
- Khodarinova L.A., Prikhodsky I.A., On algebraic integrability of
the deformed elliptic Calogero-Moser problem, J. Nonlinear
Math. Phys. 8 (2001), 50-53,
math-ph/0406052.
- Komori Y., Takemura K., The perturbation of the quantum
Calogero-Moser-Sutherland system and related results, Comm.
Math. Phys. 227 (2002), 93-118,
math.QA/0009244.
- Kuznetsov V.B., Mangazeev V.V., Sklyanin, E.K., Q-operator and
factorised separation chain for Jack polynomials, Indag.
Math. (N.S.) 14 (2003), 451-482,
math.CA/0306242.
- Kuznetsov V.B., Nijhoff F.W., Sklyanin E.K., Separation of
variables for the Ruijsenaars system, Comm. Math. Phys.
189 (1997), 855-877,
solv-int/9701004.
- Kuznetsov V.B., Sklyanin E.K., Separation of variables and
integral relations for special functions, Ramanujan J.
3 (1999), 5-35,
q-alg/9705006.
- Langmann E., Anyons and the elliptic Calogero-Sutherland model,
Lett. Math. Phys. 54 (2000), 279-289,
math-ph/0007036.
- Langmann E., A method to derive explicit formulas for an elliptic
generalization of the Jack polynomials, in Jack, Hall-Littlewood
and Macdonald Polynomials, Editors V.B. Kuznetsov and S. Sahi,
Contemp. Math. 417 (2006), 257-270,
math-ph/0511015.
- Oblomkov A.A., Integrability of some quantum systems associated
with the root system B2, Moscow Univ. Math. Bull.
54 (1999), 5-8.
- Ochiai H., Oshima T., Sekiguchi H., Commuting families of
symmetric differential operators, Proc. Japan. Acad.
70 (1994), 62-66.
- Olshanetsky M.A., Perelomov A.M., Quantum integrable systems
related to Lie algebras, Phys. Rep. 94 (1983),
313-404.
- Oshima T., Completely integrable systems with a symmetry in
coordinates, Asian J. Math. 2 (1998), 935-955.
- Oshima T., Sekiguchi H., Commuting families of differential
operators invariant under the action of a Weyl group, J.
Math. Sci. Univ. Tokyo 2 (1995), 1-75.
- Ronveaux A. (Editor), Heun's differential equations, Oxford
University Press, Oxford, 1995.
- Ruijsenaars S.N.M., Elliptic integrable systems of Calogero-Moser
type: a survey, in the Proceedings of Workshop on Elliptic
Integrable Systems (2004, Kyoto), 201-221 (Notes by Y. Komori).
- Sabatier P.C., On multidimensional Darboux transformations,
Inverse Problems 14 (1998), 355-366.
- Slavyanov S., Lay W., Special functions, Oxford University Press,
Oxford, 2000.
- Smirnov A.O., Elliptic solitons and Heun's equation, in The
Kowalevski Property, CRM Proc. Lecture Notes, Vol. 32,
Amer. Math. Soc., Providence, 2002, 287-305,
math.CA/0109149.
- Stanley R., Some combinatorial properties of Jack symmetric
functions, Adv. Math. 77 (1989), 76-115.
- Takemura K., On the eigenstates of the elliptic Calogero-Moser
model, Lett. Math. Phys. 53 (2000), 181-194,
math.QA/0002104.
- Takemura K., Quasi-exact solvability of Inozemtsev models, J.
Phys. A: Math. Gen. 35 (2002), 8867-8881,
math.QA/0205274.
- Takemura K., The Heun equation and the Calogero-Moser-Sutherland
system. I. The Bethe Ansatz method, Comm. Math. Phys.
235 (2003), 467-494,
math.CA/0103077.
- Takemura K., The Heun equation and the Calogero-Moser-Sutherland
system. II. The perturbation and the algebraic solution,
Electron. J. Differential Equations (2004), no. 15, 30 pages,
math.CA/0112179.
- Takemura K., The Heun equation and the Calogero-Moser-Sutherland
system. III. The finite gap property and the monodromy, J.
Nonlinear Math. Phys. 11 (2004), 21-46,
math.CA/0201208.
- Takemura K., The Heun equation and the Calogero-Moser-Sutherland
system. IV. The Hermite-Krichever Ansatz, Comm. Math. Phys.
258 (2005), 367-403,
math.CA/0406141.
- Takemura K., The Heun equation and the Calogero-Moser-Sutherland
system. V. The generalized Darboux transformations, J.
Nonlinear Math. Phys. 13 (2006), 584-611,
math.CA/0508093.
- Takemura K., Heun equation and Inozemtsev models, in Proceedings
of The 24th Int. Coll. Group Theoretical Methods in Physics (July
15-20, 2002, Paris),
Inst. Phys. Conf. Ser. 173 (2003), 605-608, nlin.SI/0303005.
- Treibich A., Verdier J.-L., Revetements exceptionnels et sommes de
4 nombres triangulaires,
Duke Math. J. 68 (1992), 217-236.
- Whittaker E.T., Watson G.N., A course of modern analysis, 4th ed.,
Cambridge University Press, New York,
1962.
|
|