|
SIGMA 3 (2007), 040, 14 pages nlin.SI/0701030
https://doi.org/10.3842/SIGMA.2007.040
Contribution to the Vadim Kuznetsov Memorial Issue
q-Boson in Quantum Integrable Systems
Anjan Kundu
Saha Institute of Nuclear Physics, Theory Group & Centre for Applied Mathematics & Computational Science, 1/AF Bidhan Nagar, Calcutta 700 064, India
Received November 14, 2006, in final form January 15, 2007; Published online March 05, 2007
Abstract
q-bosonic realization of the underlying Yang-Baxter
algebra is identified for a series of quantum integrable systems, including some new models
like two-mode q-bosonic model leading to a coupled
two-component derivative NLS model, wide range of q-deformed matter-radiation models, q-anyon model etc.
Result on a new exactly solvable interacting anyon gas, linked to q-anyons on the lattice is reported.
Key words:
quantum integrable systems; Yang-Baxter algebra; quantum group, q-bosonic integrable models; q-deformed matter-radiation models; q-anyon; derivative-δ-function anyon gas.
pdf (287 kb)
ps (184 kb)
tex (21 kb)
References
- Drinfel'd V.G., Hopf algebras and the quantum Yang-Baxter equation,
Dokl. Akad. Nauk SSSR 283 (1985), 1060-1064.
- Drinfel'd V.G., Quantum group, in Proc. Int. Cong. Mathematicians,
Berkeley, 1986, Vol. 1, 798-820.
- Faddeev L.D.,
Algebraic aspects of Bethe ansatz, Internat. J. Modern
Phys. A 10 (1995), 1845-1878, hep-th/9404013.
- MacFarlane A.J.,
On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q,
J. Phys. A: Math. Gen. 22
(1989), 4581-4588.
- Biedenharn L.C., The quantum group SUq(2) and a q-analogue of the boson operators, J. Phys. A:
Math. Gen. 22 (1989), L873-L878.
- Sun C.P., Fu H.C., The q-deformed boson realisation of the quantum group SU(n)q and its representations,
J. Phys. A:
Math. Gen. 22 (1989), L983-L986.
- Chaichian M., Ellinas D., Kulish P., Quantum algebra as the dynamical symmetry
of the deformed Jaynes-Cummings model,
Phys. Rev. Lett. 65 (1990), 980-983.
- Chang Z., Generalized Jaynes-Cummings model with an intensity-dependent
coupling interacting with a quantum group-theoretic coherent state,
Phys. Rev. A 47 (1993), 5017-5023.
- Basu-Mallick B., Kundu A.,
Single q-oscillator
mode realisation of the quantum group through canonical bosonisation of
SU(2) and q-oscillators, Modern Phys. Lett. A 6 (1991), 701-705.
- Bogoliubov N.M., Bullough R.K., A q-deformed completely
integrable bose gas model, J. Phys. A: Math. Gen. 25
(1992), 4057-4071.
- Bonatsos D., Raychev P.P, Roussev R.P., Smirnov Yu.F.,
Description of rotational molecular spectra by the quantum algebra SUq(2), Chem. Phys. Lett.
175 (1990),
300-306.
- Raychev P.P., Roussev R.P., Smirnov Yu.F.,
The quantum algebra SUq(2) and rotational spectra of deformed nuclei, J. Phys. G 16 (1990),
L137-L142.
- Chang Z., Yan H., Quantum group theoretic approach to vibrating
and rotating diatomic molecules, Phys. Lett. A 158
(1991), 242-246.
- Kundu A., Ng J.,
Deformation of angular momentum and its application
to the spectra of triatomic molecules,
Phys. Lett. A 197 (1995), 221-226.
- Ghosh A., Mitra P., Kundu A.,
Multidimensional isotropic and anisotropic q-oscillator models,
J. Phys. A: Math. Gen. 29 (1996), 115-124.
- Kundu A., Basu-Mallick B.,
Construction of integrable quantum
lattice models through Sklyanin like algebras,
Modern Phys. Lett. A 7 (1992), 61-69.
- Kundu A., Algebraic approach in unifying quantum integrable models,
Phys. Rev. Lett. 82 (1999), 3936-3939, hep-th/9810220.
- Kundu A., Unifying approaches in integrable systems: quantum and
statistical, ultralocal and non-ultralocal, in Classical &
Quantum Integrable Systems, IOP, Bristol, 2003, 147-181, hep-th/0303263.
- Izergin A.G., Korepin V.E.,
Lattice versions of quantum field theory models in two
dimensions, Nuclear Phys. B 205 (1982), 401-413.
- Kundu A., Basu-Mallick B.,
Classical and quantum integrability of a novel derivative
NLS model related to quantum group structures,
J. Math. Phys. 34 (1993), 1052-1062.
- Cheng Z., Chen S.X., Thermodynamics of a deformed Bose gas,
J. Phys. A: Math. Gen. 35 (2002), 9731-9749,
cond-mat/0205208.
- Basu-Mallick B., Kundu A., Hidden quantum group structure in
a relativistic quantum integrable model, Phys. Lett. B
287 (1992), 149-153.
- Kulish P., Sklyanin E.K., Quantum spectral transform method. Recent
development, in Integrable Quantum Field Theories, Lect. Notes in Phys., Vol. 151,
Editor J. Hietarinta, Springer, Berlin,
1982, 61-119.
- Ablowitz M., Lectures on the inverse scattering transform,
Studies in Appl. Math. 58 (1978) 17-94.
- Bullough R.K., Bogoliubov N.M., Pang G.D.,
Timonen J., Quantum repulsive Schrödinger equations and their
superfluidity, in Special Issue "Solitons in Science &
Engineering: Theory & Applications", Editor M. Lakshmanan,
Chaos Solitons Fractals 5 (1995), 2639-2656.
- Jaynes E.T., Cummings F.W.,
Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE 51
(1963), 89-109.
- Buck B., Sukumar C.V.,
Exactly soluble model of atom-phonon coupling showing periodic
decay and revival, Phys. Lett. A 81 (1981), 132-135.
- Blockley C.A., Walls D.F., Risken H., Quantum collapes and revivals in a quantized,
Eur. Phys. Lett. 17 (1992), 509-514.
- Buzek V., The Jaynes-Cummings model with a q analogue of a coherent state,
J. Modern Opt. 39 (1992), 949-959.
- Chang Z., Dynamics of generalized photonic fields interacting
with atoms,
Phys. Rev. A 46 (1992), 5865-5873.
- Bogoliubov N.M., Rybin A.V., Timonen J., An algebraic q-deformed
model for bosons interacting with spin impurities,
J. Phys. A: Math. Gen. 27 (1994), L363-L367.
- Bogoliubov N.M., Rybin A.V., Bullough R.K., Timonen J., The Maxwell-Bloch system
on a lattice, Phys. Rev. A 52 (1995), 1487-1493.
- Vogel W., de Mitos Filho R.,
Nonlinear Jaynes-Cummings dynamics of a trapped ion,
Phys. Rev. A 52 (1995), 4214-4217.
- Zheng H.S., Kuang L.M., Gao K.L., Jaynes-Cummings
model dynamics in two trapped ions,
quant-ph/0106020.
- Chang Z.,
Minimum-uncertainty states, a two-photon system, and quantum-group
symmetry,
Phys. Rev. A 46 (1992), 5860-5864.
- Chang Z., Quantum group and quantum symmetry, Phys. Rep. 262 (1995), 137-225.
- Bogoliubov N.M., Izergin A.G., Kitane N.A., Correlation function
for a strongly correlated boson system, Nuclear Phys. B
516 (1998), 501-528, solv-int/9710002.
- Kundu A., Quantum integrability and Bethe ansatz
solution for interacting matter-radiation systems,
J. Phys. A: Math. Gen. 37 (2004), L281-L287,
quant-ph/0307102.
- Kundu A., Exact solution of double d function
Bose gas through an interacting anyon gas, Phys. Rev. Lett.
83 (1999), 1275-1278, hep-th/9811247.
- Batchelor M.T., Guan X.W., Oelkers N., 1D interacting anyon gas:
low energy properties and Haldane exclusion statistics, Phys.
Rev. Lett. 96 (2006), 210402, 4 pages, cond-mat/0603643.
- Kundu A.,
Generation of a quantum integrable class of discrete-time or
relativistic periodic Toda chain, Phys. Lett. A 190
(1994), 79-84, hep-th/9403001.
- Kuznetsov V.B., Tsiganov A.V., Separation of variables
for the quantum relativistic Toda lattice,
hep-th/9402111.
- Faddeev L.D., Quantum completely integrable models in field theory,
Sov. Sci. Rev. Math. Phys. C 1 (1980), 107-155.
- Takhtajan L., Introduction to algebraic Bethe ansatz,
in Exactly Solvable Problems in Condensed Matter
and Relativistic Field Theory, Editors B.S. Shatry, S.S. Jha and V. Singh, Springer Verlag,
1985, 175-219.
- Shnirman A.G., Malomed B.A., Ben-Jacob E.,
Nonpertubative studies of a quantum higher order nonlinear
Schrödinger model, Phys. Rev. A 50 (1994),
3453-3463.
|
|