|
SIGMA 3 (2007), 047, 10 pages nlin.SI/0703025
https://doi.org/10.3842/SIGMA.2007.047
Contribution to the Proceedings of the Coimbra Workshop on
Geometric Aspects of Integrable Systems
Some Remarks on the KP System of the Camassa-Holm Hierarchy
Giovanni Ortenzi a, b
a) Dipartimento di Matematica
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
b) Dipartimento di Matematica e Applicazioni
Università di Milano Bicocca, Via R. Cozzi 53, 20125 Milano, Italy
Received October 31, 2006, in final form January 22, 2007; Published online March 13, 2007
Abstract
We study a Kadomtsev-Petviashvili system for the local
Camassa-Holm hierarchy obtaining a candidate to the
Baker-Akhiezer function for its first reduction generalizing the local Camassa-Holm. We focus our
attention on the differences with the standard KdV-KP case.
Key words:
KP hierarchy; CH hierarchy; Sato Grassmannian.
pdf (222 kb)
ps (160 kb)
tex (14 kb)
References
- Aratyn H., van de Leur J., Clifford algebra derivations of tau
functions for two-dimensional integrable models with positive and
negative flows, SIGMA 3 (2007), 020, 29 pages,
nlin.SI/0605027.
- Camassa R., Holm D.D., An integrable shallow water equation with
peaked solitons, Phys. Rev. Lett. 71 (1993),
1661-1664,
patt-sol/9305002.
- Casati P., Lorenzoni P., Ortenzi G., Pedroni M., On the local and
nonlocal Camassa-Holm hierarchies, J. Math. Phys.
46 (2005), 042704, 8 pages.
- Chen M., Liu S., Zhang Y., A two-component generalization of the
Camassa-Holm equation and its solutions, Lett. Math. Phys.
75 (2006), 1-15,
nlin.SI/0501028.
- Constantin A., On the inverse spectral problem for the
Camassa-Holm equation, J. Funct. Anal. 155
(1998), 352-363.
- Clarkson P.A., Gordoa P.R., Pickering A., Multicomponent equations
associated to non-isospectral scattering problems, Inverse
Problems 13 (1997), 1463-1476.
- Constantin A., McKean H.P., A shallow water equation on the
circle, Comm. Pure Appl. Math. 52 (1999),
949-982.
- Date E., Jimbo M., Kashiwara M., Miwa T., Transformation groups
for soliton equations, in Nonlinear Integrable Systems, Editors
M. Jimbo and T. Miwa, World Scientific, Singapore, 1983.
- Dubrovin B.A., Novikov S.P., Hydrodynamics of weakly deformed
soliton lattices. Differential geometry and Hamiltonian theory,
Uspekhi Mat. Nauk 44 (1989), no. 6, 29-98
(English transl.: Russian Math. Surveys 44 (1989),
no. 6, 35-124).
- Dubrovin B., Zhang Y., Normal forms of hierarchies of integrable
PDEs, Frobenius manifolds and Gromov-Witten invariants,
math.DG/0108160.
- Estevez P.G., Prada J., Hodograph transformations for a
Camassa-Holm hierarchy in 2+1 dimensions,
J. Phys. A: Math. Gen. 38 (2005), 1287-1297,
nlin.SI/0412019.
- Falqui G., On a Camassa-Holm type equation with two dependent
variables, J. Phys. A: Math. Gen. 39 (2006),
327-342,
nlin.SI/0505059.
- Falqui G., Magri F., Pedroni M., Bihamiltonian geometry, Darboux
coverings and linearization of the KP hierarchy, Comm. Math.
Phys. 197 (1998), 303-324,
solv-int/9806002.
- Fontanelli L., Lorenzoni P., Pedroni M., A 3-component extension
of the Camassa-Holm hierarchy,
nlin.SI/0604053.
- Ivanov R., Extended Camassa-Holm hierarchy and conserved
quantities, Z. Naturforschung A 61 (2006),
133-138,
nlin.SI/0601066.
- Khesin B., Misiolek G., Euler equations on homogeneous spaces and
Virasoro orbits,
Adv. Math. 176 (2003), 116-144, math.SG/0210397.
- Konopelchenko B., Martinez Alonso L., Medina E., Singular sector
of the Kadomtsev-Petviashvili hierarchy, ∂
operators of nonzero index, and associated integrable systems,
J. Math. Phys. 41 (2000), 385-413,
solv-int/9806001.
- Kraenkel R.A., Senthilvelan M., Zenchuk A.I., Lie symmetry
analysis and reductions of a two-dimensional integrable
generalization of the Camassa-Holm equation, Phys. Lett. A
273 (2000), 183-193.
- Lenells J., Conservation laws of the Camassa-Holm equation,
J. Phys. A: Math. Gen. 38 (2005), 869-880.
- Lorenzoni P., Pedroni M., On the bi-Hamiltonian structures of the
Camassa-Holm and Harry Dym equations, Int. Math. Res. Not.
75 (2004), 4019-4029,
nlin.SI/0407057.
- Martinez Alonso L., Shabat A.B., On the prolongation of a
hierarchy of hydrodynamic chains, New trends in integrability and
partial solvability, NATO Sci. Ser. II Math. Phys. Chem.,
Vol. 132, Kluwer Acad. Publ., Dordrecht, 2004, 263-280.
- Martines Alonso L., Shabat A.B., Hydrodynamic reductions and
solutions of the universal hierarchy, Teoret. Mat. Fiz.
140 (2004), 216-229 (English transl.: Theoret.
and Math. Phys. 140 (2004),
1073-1085), nlin.SI/0312043.
- Magri F., Casati P., Falqui G., Pedroni M., Eight lectures on
integrable systems, in Integrability of Nonlinear Systems,
Lecture Notes in Physics, Vol. 638, Editors
Y. Kosmann-Schwarzbach et al., 2004, 209-250.
- Casati P., Falqui G., Magri F., Pedroni M., Soliton equations,
bi-Hamiltonian manifolds and integrability, 21o
Coloquio Brasileiro de Matemetica (21st Brazilian Mathematics
Colloquium),
Instituto de Matemetica Pura e Aplicada (IMPA), Rio de Janeiro, 1997.
- Reyes E.G., Geometric integrability of the Camassa-Holm equation,
Lett. Math. Phys. 59 (2002), 117-131.
- Shabat A., Universal solitonic hierarchy, J. Nonlinear
Math. Phys. 12 (2005), suppl. 1, 614-624.
- Sato M., Sato Y., Soliton equations as dynamical systems on
infinite-dimensional Grassmann manifold, in Nonlinear PDEs in
Applied Sciences (US-Japan Seminar, Tokyo), Editors P. Lax and
H. Fujita, North-Holland, Amsterdam, 1982, 259-271.
- Segal G., Wilson G., Loop groups and equations of the KdV type,
Publ. Math. IHES 61 (1985), 5-65.
|
|