|
SIGMA 3 (2007), 049, 28 pages math.DG/0703189
https://doi.org/10.3842/SIGMA.2007.049
Contribution to the Proceedings of the Coimbra Workshop on
Geometric Aspects of Integrable Systems
Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group
David Iglesias a, Juan Carlos Marrero b, David Martín de Diego a, Eduardo Martínez c and Edith Padrón b
a) Departamento de Matemáticas, Instituto de Matemáticas y Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain
b) Departamento de Matemática Fundamental, Facultad de Matemáticas,
Universidad de la Laguna, La Laguna, Tenerife, Canary Islands, Spain
c) Departamento de Matemática Aplicada, Facultad de Ciencias,
Universidad de Zaragoza, 50009 Zaragoza, Spain
Received November 14, 2006, in final form March 06, 2007; Published online March 16, 2007
Abstract
We describe the reduction procedure for a symplectic
Lie algebroid by a Lie subalgebroid and a symmetry Lie group.
Moreover, given an invariant Hamiltonian function we obtain the
corresponding reduced Hamiltonian dynamics. Several examples
illustrate the generality of the theory.
Key words:
Lie algebroids and subalgebroids; symplectic Lie algebroids; Hamiltonian dynamics; reduction procedure.
pdf (367 kb)
ps (248 kb)
tex (28 kb)
References
- Bursztyn H., Cavalcanti G.R., Gualtieri M.,
Reduction of Courant algebroids and generalized complex structures,
Adv. Math., to appear, math.DG/0509640.
- Cannas A., Weinstein A.,
Geometric models for noncommutative algebras, Berkeley
Mathematics Lecture Notes Series, American Math. Soc., 1999.
- Cariñena J.F., Nunes da Costa J.M., Santos P.,
Reduction of Lie algebroid structures,
Int. J. Geom. Methods Mod. Phys. 2 (2005), 965-991.
- Cushman R., Bates L., Global aspects of classical integrable systems, Birkhäuser Verlag, Basel, 1997.
- Dardié J.M., Medina A., Double extension symplectique
d'un groupe de Lie symplectique, Adv. Math. 117 (1996),
208-227.
- Fernandes R.L., Lie algebroids, holonomy and characteristic classes, Adv. Math.
170 (2002), 119-179, math.DG/0007132.
- Gotay M.J., Tuynman G.M., R2n is a
universal symplectic manifold for reduction, Lett. Math. Phys.
18 (1989), 55-59.
- Grabowska K., Urbanski P., Grabowski J., Geometrical mechanics on algebroids,
Int. J. Geom. Methods Mod. Phys. 3 (2006), 559-576, math-ph/0509063.
- Higgins P.J., Mackenzie K.C.H., Algebraic
constructions in the category of Lie algebroids, J. Algebra 129 (1990), 194-230.
- Iglesias D., Marrero J.C., Martín de Diego D., Martínez
E., Padrón E., Marsden-Weinstein reduction for symplectic Lie
algebroids, in progress.
- de León M., Marrero J.C., Martínez E.,
Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A: Math. Gen. 38 (2005), R241-R308,
math.DG/0407528.
- Liu Z-J., Weinstein A., Xu P., Manin triples for
Lie bialgebroids, J. Differential Geom. 45 (1997),
547-574, dg-ga/9508013.
- Mackenzie K., General theory of Lie groupoids and Lie algebroids,
London Mathematical Society Lecture Note Series, Vol. 213, Cambridge
University Press, 2005.
- Mackenzie K., Xu P., Lie bialgebroids and Poisson
groupoids, Duke Math. J. 73 (1994), 415-452.
- Lewis D., Ratiu T., Simo J.C., Marsden J.E.,
The heavy top: a geometric treatment, Nonlinearity 5
(1992), 1-48.
- Marsden J.E., Misiolek G., Ortega J.-P., Perlmutter M., Ratiu T.,
Hamiltonian reduction by stages, Preprint, 2007.
- Marsden J.E., Ratiu T., Reduction of Poisson manifolds,
Lett. Math. Phys. 11 (1986), 161-169.
- Marsden J.E., Weinstein A., Reduction of symplectic
manifolds with symmetry, Rep. Math. Phys. 5 (1974),
121-130.
- Martínez E., Lagrangian mechanics on Lie algebroids, Acta Appl. Math. 67 (2001), 295-320.
- Ortega J.-P., Ratiu T.S., Momentum maps and Hamiltonian reduction,
Progress in Mathematics, Vol. 222, Birkhäuser Boston, Inc., Boston,
MA, 2004.
- Weinstein A., Lagrangian mechanics and
groupoids, Fields Inst. Commun. 7 (1996), 207-231.
|
|