|
SIGMA 3 (2007), 055, 84 pages math-ph/0703080
https://doi.org/10.3842/SIGMA.2007.055
Eigenfunction Expansions of Functions Describing Systems with Symmetries
Ivan Kachuryk a and Anatoliy Klimyk b
a) Khmel'nyts'kyy National University,
Khmel'nyts'kyy, Ukraine
b) Bogolyubov Institute for Theoretical Physics,
14-b Metrologichna Str., Kyiv-143, 03143 Ukraine
Received March 02, 2007; Published online March 28, 2007
Abstract
Physical systems with symmetries are described by
functions containing kinematical and dynamical parts. We consider
the case when kinematical symmetries are described by a noncompact
semisimple real Lie group G. Then separation of kinematical
parts in the functions is fulfilled by means of harmonic
analysis related to the group G. This separation depends on
choice of a coordinate system on the space where a physical
system exists. In the paper we review how coordinate systems can
be chosen and how the corresponding harmonic analysis can be done.
In the first part we consider in detail the case when G is the
de Sitter group SO0(1,4). In the second part we show how the
corresponding theory can be developed for any noncompact
semisimple real Lie group.
Key words:
representations; eigenfunction expansion; special functions; de Sitter group; semisimple Lie group; coordinate systems; invariant operators.
pdf (751 kb)
ps (434 kb)
tex (71 kb)
References
- Fushchych W.I., Nikitin A.G., Symmetries of equations of quantum
mechanics, Allerton Press, New York, 1994.
- Sitenko G.A., Scattering theory, Springer, Berlin,
1985.
- Vilenkin N.Ja., Klimyk A.U., Group representation and
special functions, Vol. II, Kluwer, Dordrecht, 1993.
- Nikiforov A.F., Suslov S.K., Uvarov V.B., Classical orthogonal
polynomials of discrete variables, Nauka, Moscow, 1985 (in
Russian).
- Smirnov Yu.F., Shitikov K.V., K-harmonic method and the model of
shells, Sov. J. Part. Nucl. 8 (1977), 847-910.
- Filippov G.F., Ovcharenko V.I., Smirnov Yu.F.,
Microscopic theory of collective exitations of atomic nuclears,
Naukova Dumka, Kiev, 1981 (in Russian).
- Vilenkin N.Ja., Klimyk A.U., Group representation and
special functions, Vol. I, Kluwer, Dordrecht, 1991.
- Basu D., Wolf K.B., The unitary irreducible representations of
SL(2,R) in all subgroup reductions, J. Math. Phys.
23 (1982), 189-208.
- Vilenkin N.Ja., Smorodinsky Ja.A., Invariant expansion of
relativistic amplitudes, Soviet Physics JETP 19
(1964), 1209-1218.
- Winternitz P., Smorodinsky Yu.A., Sheftel M.R., Poincaré and
Lorentz invariant expansions of relativistic amplitudes,
Yadernaya Fizika 7 (1968), 1325-1338.
- Winternitz P., Two variable expansions based on the Lorentz and
conformal groups, in Lectures in Theoretical Physics, Editors
A.O. Barut and W.E. Brittin, Colorado University Press, Boulder,
1971.
- Kalnins E.G., Patera J., Sharp R.T., Winternitz P., Two variable
Galilei-group expansion of nonrelativistic scattering amplitudes,
Phys. Rev. D 8 (1973), 2552-2572.
- Winternitz P., Poincaré groups, its little subgroups and their
applications in particle physics, Lectures at the Summer School on
Group Representations and Quantum Theory, Dublin, 1969.
- Winternitz P., Lucac I., Smorodinsky Yu.A., Quantum numbers in the
little groups of the Poincaré group, Yadernaya Fizika
7 (1968), 192-201.
- Warner G., Harmonic analysis on semisimple Lie groups, Vols. 1, 2,
Springer, Berlin, 1972.
- Helgason S., Differential geometry, Lie groups, and symmetric
spaces, Academic Press, New York, 1978.
- Klimyk A.U., Kachurik I.I., Computation methods in theory of group
representations, Vyshcha Shkola, Kiev, 1986 (in Russian).
- Vilenkin N.Ja., Klimyk A.U., Group representation and
special functions, Vol. III, Kluwer, Dordrecht, 1992.
- Vilenkin N.Ja., Klimyk A.U., Group representation and
special functions. Recent advances, Kluwer, Dordrecht, 1995.
- Erdelyi A., Magnus W., Oberheittinger F., Tricomi F., Higher
transcendental functions, Vol. I, McGraw-Hill, New York, 1953.
- Erdelyi A., Magnus W., Oberheittinger F., Tricomi F., Higher
transcendental functions, Vol. II, McGraw-Hill, New York, 1954.
- Boyer C.P., Matrix elements for the most degenerate principal
series of representations of SO0(p,1), J. Math. Phys.
12 (1971), 1599-1603.
- Varlamov V.V., Spherical functions on the de Sitter group, J.
Phys. A: Math. Teor. 40 (2007), 163-201,
math-ph/0604026.
- Gel'fand I.M., Graev M.I., Applications of the method of
orispheres to spectral analysis of functions on real and imaginary
Lobachevsky spaces, Trudy Moscow Math. Soc. 11 (1962),
243-308.
- Vilenkin N.Ja., Special functions and the theory of group
representations, Amer. Math. Soc., Providence, RI, 1968.
- Thomas L.H., On unitary representations of the group of de Sitter
space, Ann. Math. 51 (1941), 113-126.
- Newton T.D., A note on the representations of the de Sitter group,
Ann. Math. 60 (1950), 730-733.
- Dixmier J., Representations integrable du groupe de De Sitter,
Bull. Soc. Math. France 89 (1961), 9-41.
- Takahashi R., Sur les representations unitaire des groupes de
Lorentz generalises, Bull. Soc. Math. France 91
(1963), 289-433.
- Hirai T., On irreducible representations of the Lorentz group of
n-th order, Proc. Japan Acad. 38 (1962), 258-262.
- Gurseiy F., Group theoretical concepts and methods in elementary
particle physics, Gordon and Breach, New York, 1964.
- Fronsdal C., Elementary particles in a curved space, Rev.
Mod. Phys. 37 (1965), 221-224.
- Malkin I.A., Man'ko V.I., Dynamical symmetries and coherent
states of quantum systems, Nauka, Moscow, 1979 (in Russian).
- Barut A.O., Bohm A., Dynamical groups and mass formulas,
Phys. Rev. B 139 (1965), 1107-1112.
- Kachuryk I.I., Invariant expansions of solutions of 5-dimensional
Klein-Gordon equation, Ukrainian Phys. J. 21 (1976),
1853-1862
- Hirai T., The Plancherel formula for the Lorentz group of n-th
order, Proc. Japan Acad. 42 (1966), 323-326.
- Limic N., Niederle J., Raczka R., Continuous degenerate
representations of noncompact rotation groups, J. Math.
Phys. 7 (1966), 2026-2035.
- Maurin K., General eigenfunction expansions and unitary
representations of topological groups, PWN, Warszawa, 1968.
- Gel'fand I.M., Graev M.I., Vilenkin N.Ja., Integral geometry and
related problems in the theory of representations, Vol. 5,
Generalized functions, Academic Press, New York, 1966.
- Gradshtein I.S., Ryzhik I.M., Table of integrals, series and
products, Academic Press, New York, 1980.
- Ablamowitz M., Stegun I.A. (Editors), Handbook on special
functions, National Bureau of Standards, New York, 1964.
- Zhelobenko D.P., Compact Lie groups and their representations,
Amer. Math. Soc., Providence, RI, 1973.
- Knapp A.W., Representation theory of semisimple Lie groups. An
overview based on examples, Princeton Univ. Press, Princeton, NJ,
1986.
- Klimyk A.U., Representation matrix elements and Clebsch-Gordan
coefficients, Naukova Dumka, Kiev, 1979 (in Russian).
- Berger M., Les espaces symmetriques non compacts, Ann. Ecole
Norm. Sup. 74 (1957), 85-177.
- Oshima T., Sekiguchi J., Eigenspaces of invariant differential
operators on an affine symmetric space, Invent. Math.
57 (1980), 1-81.
- Muracami S., Sur la classification des algebres de Lie reelles
et simples, Osaka J. Math. 2 (1965), 291-307.
- Bruhat F., Sur les representations induites des groupes de Lie,
Bull. Soc. Math. France 84 (1956), 97-207.
- Matsuki T., The orbits of affine symmetric spaces under the
action of minimal parabolic subgroups, J. Math. Soc. Jap.
31 (1981), 331-357.
- Helgason S., A duality for symmetric spaces, with applications to
group representations, Adv. Math. 5 (1970), 1-154.
- Helgason S., Geometric analysis on symmetric spaces, Amer. Math.
Soc., Providence, RI, 1994.
- Harish-Chandra, Harmonic analysis on the real reductive groups,
Ann. Math. 104 (1976), 117-201.
|
|