|
SIGMA 3 (2007), 060, 31 pages math.QA/0703893
https://doi.org/10.3842/SIGMA.2007.060
Contribution to the Vadim Kuznetsov Memorial Issue
Generating Operator of XXX or Gaudin Transfer Matrices Has Quasi-Exponential Kernel
Evgeny Mukhin a, Vitaly Tarasov a, b and Alexander Varchenko c
a) Department of Mathematical Sciences,
Indiana University - Purdue University Indianapolis,
402 North Blackford St, Indianapolis, IN 46202-3216, USA
b) St. Petersburg Branch of Steklov Mathematical Institute,
Fontanka 27, St. Petersburg, 191023, Russia
c) Department of Mathematics, University of North Carolina
at Chapel Hill, Chapel Hill, NC 27599-3250, USA
Received March 28, 2007; Published online April 25, 2007
Abstract
Let M be the tensor product of finite-dimensional polynomial evaluation
Y(glN)-modules. Consider the universal difference operator
D = åN k=0(-1)k Tk(u) e-k¶u whose coefficients
Tk(u): M ® M are the XXX transfer matrices associated with M.
We show that the difference equation Df = 0 for an M-valued
function f has a basis of solutions consisting of quasi-exponentials.
We prove the same for the universal differential operator
D = åNk=0(-1)kSk(u) ¶uN-k whose coefficients
Sk(u) : M® M are the Gaudin transfer matrices associated with the
tensor product M of finite-dimensional polynomial evaluation glN[x]-modules.
Key words:
Gaudin model; XXX model; universal differential operator.
pdf (432 kb)
ps (276 kb)
tex (30 kb)
References
- Chervov A., Talalaev D.,
Universal G-oper and Gaudin eigenproblem, hep-th/0409007.
- Drinfeld V.,
A new realization of Yangians and quantized affine algebras,
Soviet Math. Dokl. 36 (1988), 212-216.
- Kulish P., Reshetikhin N.,
Diagonalization of GL(n) invariant transfer-matrices and quantum
N-wave system (Lee model), J. Phys. A: Math. Gen. 15 (1983), L591-L596.
- Molev A., Nazarov M., Olshanski G.,
Yangians and classical Lie algebras, Russian Math. Surveys
51 (1996), no. 2, 205-282, hep-th/9409025.
- Mukhin E., Tarasov V., Varchenko A.,
The B. and M. Shapiro conjecture in real algebraic geometry
and the Bethe ansatz, math.AG/0512299.
- Mukhin E., Tarasov V., Varchenko A.,
Bethe eigenvectors of higher transfer matrices,
J. Stat. Mech. Theory Exp. (2006), no. 8,
P08002, 44 pages, math.QA/0605015.
- Mukhin E., Varchenko A.,
Critical points of master functions and flag varieties,
Commun. Contemp. Math. 6 (2004), no. 1, 111-163,
math.QA/0209017.
- Mukhin E., Varchenko A.,
Solutions to the XXX type Bethe ansatz equations and flag varieties,
Cent. Eur. J. Math. 1 (2003), no. 2,
238-271, math.QA/0211321.
- Mukhin E., Varchenko A.,
Spaces of quasi-polynomials and the Bethe ansatz, math.QA/0604048.
- Reshetikhin N., Varchenko A.,
Quasiclassical asymptotics of solutions to the KZ equations,
in Geometry, Topology and Physics for R. Bott,
Intern. Press, 1995, 293-322, hep-th/9402126.
- Rimányi R., Stevens L., Varchenko A.,
Combinatorics of rational functions and Poincaré-Birkhoff-Witt
expansions of the canonical U(n-)-valued differential form,
Ann. Comb. 9 (2005), no. 1, 57-74, math.CO/0407101.
- Schechtman V., Varchenko A.,
Arrangements of hyperplanes and Lie algebra homology,
Invent. Math. 106 (1991), 139-194.
- Talalaev D., Quantization of the Gaudin system,
hep-th/0404153.
- Tarasov V., Varchenko A.,
Combinatorial formulae for nested bethe vectors,
math.QA/0702277.
|
|