|
SIGMA 3 (2007), 064, 12 pages arXiv:0705.0276
https://doi.org/10.3842/SIGMA.2007.064
Degenerate Series Representations of the q-Deformed Algebra so'q(r,s)
Valentyna A. Groza
National Aviation University, 1 Komarov Ave., 03058 Kyiv, Ukraine
Received January 26, 2007, in final form April
18, 2007; Published online May 02, 2007
Abstract
The q-deformed algebra so'q(r,s) is a real
form of the q-deformed algebra Uq'(so(n,C)),
n = r + s, which differs from the quantum algebra
Uq(so(n,C)) of Drinfeld and Jimbo. We study representations
of the most degenerate series of the algebra so'q(r,s). The
formulas of action of operators of these representations upon the
basis corresponding to restriction of representations onto the
subalgebra
so'q(r) × so'q(s)
are given. Most of
these representations are irreducible. Reducible representations
appear under some conditions for the parameters determining the
representations. All irreducible constituents which appear in
reducible representations of the degenerate series are found. All
*-representations of so'q(r,s) are separated in the set
of irreducible representations obtained in the paper.
Key words:
q-deformed algebras; irreducible representations; reducible representations.
pdf (235 kb)
ps (163 kb)
tex (13 kb)
References
- Gavrilik A.M., Klimyk A.U., q-deformed orthogonal and
pseudo-orthogonal algebras and their representations, Lett. Math. Phys.
21 (1991), 215-220.
- Drinfeld V.G., Hopf algebras and quantum Yang-Baxter equation,
Sov. Math. Dokl. 32 (1985), 254-258.
- Jimbo M., A q-difference analogue of Uq(gl(N + 1)) and
the Yang-Baxter equations, Lett. Math. Phys. 10 (1985), 63-69.
- Klimyk A.U., Schmüdgen K., Quantum groups and their
representations, Springer, Berlin, 1997.
- Klimyk A.U., Kachurik I.I., Spectra,
eigenvectors and overlap functions for representation operators of
q-deformed algebras, Comm. Math. Phys. 175 (1996), 89-111.
- Nelson J., Regge T., 2 + 1 gravity for genus s > 1,
Comm. Math. Phys. 141 (1991), 211-223.
- Noumi M., Macdonald's symmetric polynomials as zonal
spherical functions on quantum homogeneous spaces, Adv. Math. 123
(1996), 16-77.
- Noumi M., Umeda T., Wakayama M.,
Dual pairs, spherical harmonics and a Capelli identity
in quantum group theory, Compos. Math. 104 (1996), 227-277.
- Iorgov N.Z., Klimyk A.U., The q-Laplace
operator and q-harmonic polynomials on the quantum vector space,
J. Math. Phys. 42 (2001), 1326-1345.
- Bullock D., Przytycki J.H., Multiplicative
structure of Kauffman bracket skein module quantization,
math.QA/9902117.
- Twietmeyer E., Real forms of Uq(g),
Lett. Math. Phys. 49 (1992), 49-58.
- Dobrev V.K., Canonical q-deformation of noncompact
Lie (super)algebras, J. Phys. A: Math. Gen. 26 (1993),
1317-1329.
- Celegini E., Giachetti R., Reyman A., Sorace E., Tarlini M.,
SOq(n + 1,n-1) as a real form of SOq(2n,C),
Lett. Math. Phys. 23 (1991), 45-44.
- Raczka R., Limic N., Niederle J., Discrete degenerate representations
of the noncompact rotation groups,
J. Math. Phys. 7 (1966), 1861-1876.
- Molchanov V.F., Representations of pseudo-orthogonal groups
associated with a cone, Math. USSR Sbornik 10 (1970), 353-347.
- Klimyk A.U., Matrix elements and Clebsch-Gordan
coefficients of group representations, Naukova Dumka, Kiev, 1979.
- Howe R.E., Tan E.C., Homogeneous functions on light cone:
the infinitesimal structure of some degenerate principal series
representations, Bull. Amer. Math. Soc. 28 (1993), 1-74.
- Gavrilik A.M., Klimyk A.U., Representations of
q-deformed algebras Uq(so2,1) and Uq(so3,1),
J. Math. Phys. 35 (1994), 3670-3686.
- Kachurik I.I., Klimyk A.U., Representations of the
q-deformed algebra Uq(sor,2), Dokl. Akad. Nauk
Ukrainy, Ser. A (1995), no. 9, 18-20.
- Schmüdgen K., Unbounded operator algebras and
representation theory, Birkhäuser, Basel, 1990.
- Ostrovskyi V., Samoilenko Yu., Introduction to the theory
of representations of finitely presented *-algebras,
Reviers in Math. and Math. Phys. 11 (1999), 1-261.
|
|