|
SIGMA 3 (2007), 068, 12 pages arXiv:0705.2671
https://doi.org/10.3842/SIGMA.2007.068
Contribution to the Proceedings of the O'Raifeartaigh Symposium
Hidden Symmetries of Stochastic Models
Boyka Aneva
Institute for Nuclear Research and Nuclear Energy,
Bulgarian Academy of Sciences, 72 Tsarigradsko chaussee, 1784 Sofia, Bulgaria
Received November 23, 2006, in final form May 04, 2007; Published online May 18, 2007
Abstract
In the matrix product states approach to n species
diffusion processes the stationary probability distribution is
expressed as a matrix product state with respect to a quadratic
algebra determined by the dynamics of the process. The quadratic
algebra defines a noncommutative space with a SUq(n) quantum
group action as its symmetry. Boundary processes amount to the
appearance of parameter dependent linear terms in the algebraic
relations and lead to a reduction of the SUq(n) symmetry. We
argue that the boundary operators of the asymmetric simple
exclusion process generate a tridiagonal algebra whose irriducible
representations are expressed in terms of the Askey-Wilson
polynomials. The Askey-Wilson algebra arises as a symmetry of the
boundary problem and allows to solve the model exactly.
Key words:
stohastic models; tridiagonal algebra; Askey-Wilson polynomials.
pdf (219 kb)
ps (163 kb)
tex (16 kb)
References
- Schuetz G.M., Phase transitions and
critical phenomena, Vol. 19, Academic Press, London, 2000.
- Schreckenberg M., Schadschneider A.,
Nagel K., Ito N., Discrete stochastic models for traffic flow,
Phys. Rev. E 51 (1995), 2939-2949,
cond-mat/9412045.
- Macdonald J.T., Gibbs J.H.,
Pipkin A.C., Kinetics of biopolymerization on nucleic acid templates,
Biopolymers 6 (1968), 1-25.
- Krug J., Spohn H., Kinetic roughening of growing surfaces, in Solids
Far from Equilibrium, Editor C. Godreche, Cambridge University Press, Cambridge, 1991, 412-525.
- Sandow S., Schuetz G.M., On Uq(SU(2))-symmetric driven diffusion, Europhys. Lett.
26 (1994), 7-13, cond-mat/9307027.
- Derrida B., Evans M.R., Hakim V.,
Pasquier V., Exact solution of a 1D asymmetric exclusion model using a matrix formulation,
J. Phys. A: Math. Gen. 26 (1993), 1493-1517.
- Derrida B., An exactly soluble non-equilibrium system: the asymmetric simple exclusion process,
Phys. Rep. 301 (1998), 65-83 (and references therein).
- Schuetz G.M., Domany E., Phase transitions in an exactly soluble one-dimensional asymmetric
exclusion model, J. Stat. Phys. 72 (1993), 277-296,
cond-mat/9303038.
- Krug J., Boundary-induced phase transitions in driven diffusive systems,
Phys. Rev. Lett. 67 (1991), 1882-1885.
- Isaev A., Pyatov P., Rittenberg V.,
Diffusion algebras, J. Phys. A: Math. Gen. 34 (2001),
5815-5834, cond-mat/0103603.
- Aneva B., The noncommutative space of stochastic diffusion systems,
J. Phys. A: Math. Gen. 35 (2002), 859-877.
- Essler F.H.L., Rittenberg V., Representations of the quadratic algebra and
partially asymmetric diffusion with open boundaries, J. Phys. A: Math. Gen. 29 (1996), 3375-3407,
cond-mat/9506131.
- Arndt P.F., Heinzel T., Rittenberg V., Stochastic models on a ring and
quadratic algebras. The three-species diffusion problem, J. Phys. A: Math. Gen. 31 (1998), 833-843,
cond-mat/9703182.
- Fairlie D., Zachos C., Multiparameter associative generalizations of canonical
commutation relations and quantized planes, Phys. Lett. B 256 (1991), 43-49.
- Wess J., Zumino B., Covariant differential calculus on the quantum hyperplane,
Nucl. Phys. B, Proc. Suppl. 18 (1990), 302-312.
- Blythe R.A., Evans M.R., Colaiori F.,
Essler F.H.L., Exact solution of a partially asymmetric exclusion model using a deformed
oscillator algebra, J. Phys. A: Math. Gen. 33 (2000), 2313-2332.
- Sandow S., Partially asymmetric exclusion process with open boundaries,
Phys. Rev. E 50 (1994), 2660-2667, cond-mat/9405073.
- Stinchcombe R.B., Schuetz G.M., Application of operator algebras to stochastic dynamics
and the Heisenberg chain, Phys. Rev. Lett. 75 (1995), 140-143.
- Arik M., Coon D.D., Hilbert spaces of analytic functions and generalized coherent states,
J. Math. Phys. 17 (1976), 524-527.
- Kulish P.P., Damaskinsky E.V., On the q oscillator and the quantum algebra suq(1,1),
J. Phys. A: Math. Gen. 23 (1990), L415-L419.
- Chaichian M., Kulish P.P., Quantum Lie superalgebras and q-oscillators,
Phys. Lett. B 234 (1990), 72-80.
- Sasamoto T., One-dimensional partially asymmetric simple exclusion
process with open boundaries: orthogonal polynomials approach,
J. Phys. A: Math. Gen. 32 (1999), 7109-7131.
- Uchiyama M., Sasamoto T., Wadati M., Asymmetric simple exclusion process
with open boundaries and Askey-Wilson polynomials,
J. Phys. A: Math. Gen. 37 (2004), 4985-5002,
cond-mat/0312457.
- Zhedanov A.S., Hidden symmetry of Askey-Wilson polynomials,
Teoret. Mat. Fiz. 89 (1991), 190-204.
- Granovskii Y.A., Lutsenko I.M., Zhedanov A.S., Mutual integrability, quadratic algebras
and dynamical symmetry, Ann. Physics 217 (1992), 1-20.
- Terwilliger P., An algebraic approach to the Askey scheme of orthogonal polynomials,
Lecture Notes in Mathematics, Vol. 1883,
Editors F. Marcellan and W.V. Assche, Springer, Berlin, 2006, 225-330.
- Terwilliger P., Two relations that generalize the q-Serre relations and the Dolan-Grady relations,
Proceedings of the Nagoya 1999 International Workshop on Physics and Combinatorics, Editors
A.N. Kirillov, A. Tsuchiya and H. Umemura, World Sci. Pub., River Edge, NJ, 2001, 377-398,
math.QA/0307016.
- Dolan L., Grady M., Conserved charges from self-duality,
Phys. Rev. D25 (1982), 1587-1604.
- Askey R.A., Wilson J.A., Some basic hypergeometric orthogonal polynomials that
generalize Jacobi polynomials,
Mem. Amer. Math. Soc. (1985), no. 319, 55 pages.
- Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and Its
Applications, Vol. 35, Cambridge University Press, Cambridge, 1990.
|
|