|
SIGMA 3 (2007), 072, 14 pages arXiv:0705.4546
https://doi.org/10.3842/SIGMA.2007.072
Contribution to the Vadim Kuznetsov Memorial Issue
Skew Divided Difference Operators and Schubert Polynomials
Anatol N. Kirillov
Research Institute of Mathematical Sciences (RIMS),
Sakyo-ku, Kyoto 606-8502, Japan
Received May 01, 2007; Published online May 31, 2007
Abstract
We study an action of the skew divided difference operators on the
Schubert polynomials and give an explicit formula
for structural constants for the Schubert polynomials in
terms of certain weighted paths in the Bruhat order on the symmetric group.
We also prove that, under certain assumptions, the skew divided
difference operators transform the Schubert polynomials into polynomials
with positive integer coefficients.
Key words:
divided differences; nilCoxeter algebras; Schubert polynomials.
pdf (252 kb)
ps (187 kb)
tex (15 kb)
References
- Bergeron N., Sottile F., Skew Schubert functions and
the Pieri formula for flag manifolds, Trans. Amer. Math. Soc. 354
(2002), no. 2, 651-673, alg-geom/9709034.
- Chen W., Yan G.-G., Yang A., The skew Schubert
polynomials, European J. Combin. 25 (2004), 1181-1196.
- Fomin S., Kirillov A.N., The Yang-Baxter equation,
symmetric functions and Schubert polynomials, Discrete Math.
53 (1996), 123-143.
- Fomin S., Kirillov A.N., Quadratic algebras, Dunkl
elements, and Schubert calculus, in Advances in Geometry, Editors
J.-L. Brylinski and R. Brylinski, Progr. Math. 172 (1999), 147-182.
- Fomin S., Stanley R., Schubert polynomials and
nilCoxeter algebra, Adv. Math. 103 (1994), 196-207.
- Kirillov A.N., On some quadratic algebras: Jucys-Murphy and
Dunkl elements, in Calogero-Moser-Sutherland models (1997, Montrèal, QC),
CRM Ser. Math. Phys., Springer, New York, 2000, 231-248,
q-alg/9705003.
- Kogan M., RC-graphs and a generalized Littlewood-Richardson
rule, Int. Math. Res. Not. 15 (2001), 765-782,
math.CO/0010108.
- Kohnert A., Multiplication of a Schubert polynomial by a
Schur polynomial, Ann. Comb. 1 (1997), 367-375.
- Lascoux A., Schützenberger M.-P.,
Polynômes de Schubert, C. R. Acad. Sci. Paris Ser. I Math.
294 (1982), 447-450.
- Lenart C., Sottile F., Skew Schubert functions and the
Pieri formula for flag manifolds, Trans. Amer. Math. Soc. 354
(2002), 651-673.
- Macdonald I.G., Notes on Schubert polynomials, Publ.
LACIM, Univ. du Quebec à Montréal, 1991.
- Macdonald I.G., Symmetric functions and Hall
polynomials, 2nd ed., Oxford Univ. Press, New York, London, 1995.
|
|