|
SIGMA 3 (2007), 076, 22 pages quant-ph/0701230
https://doi.org/10.3842/SIGMA.2007.076
SU2 Nonstandard Bases: Case of Mutually Unbiased Bases
Olivier Albouy and Maurice R. Kibler
Université de Lyon, Institut de Physique Nucléaire,
Université Lyon 1 and CNRS/IN2P3, 43 bd du 11 novembre 1918,
F-69622 Villeurbanne Cedex, France
Received April 07, 2007, in final form June 16, 2007; Published online July 08, 2007
Abstract
This paper deals with bases in a finite-dimensional
Hilbert space. Such a space can be realized as a subspace of the
representation space of SU$_2$ corresponding to an irreducible
representation of SU$_2$. The representation theory of SU$_2$ is
reconsidered via the use of two truncated deformed oscillators.
This leads to replacement of the familiar scheme $\{ j^2 , j_z \}$
by a scheme $\{ j^2 , v_{ra} \}$, where the two-parameter operator
$v_{ra}$ is defined in the universal enveloping algebra of the
Lie algebra su$_2$. The eigenvectors of the commuting set of
operators $\{ j^2 , v_{ra} \}$ are adapted to a tower of chains
SO$_3 \supset C_{2j+1}$ ($2j \in \mathbb{N}^{\ast}$), where
$C_{2j+1}$ is the cyclic group of order $2j+1$. In the case where
$2j+1$ is prime, the corresponding eigenvectors generate a
complete set of mutually unbiased bases. Some useful relations on
generalized quadratic Gauss sums are exposed in three appendices.
Key words:
symmetry adapted bases; truncated deformed oscillators; angular momentum; polar decomposition of su$_2$; finite quantum mechanics; cyclic systems; mutually unbiased bases; Gauss sums.
pdf (382 kb)
ps (222 kb)
tex (28 kb)
References
- Melvin M.A.,
Simplification in finding symmetry-adapted eigenfunctions,
Rev. Modern Phys. 28 (1956), 18-44.
- Altmann S.L., Cracknell A.P., Lattice harmonics I. Cubic groups,
Rev. Modern Phys. 37 (1965), 19-32.
- Altmann S.L., Bradley C.J., Lattice harmonics II. Hexagonal
close-packed lattice, Rev. Modern Phys. 37 (1965),
33-45.
- Kibler M., Ionic and paramagnetic energy levels: algebra. I,
J. Mol. Spectrosc. 26 (1968), 111-130.
- Kibler M., Energy levels of paramagnetic ions: algebra. II,
Int. J. Quantum Chem. 3 (1969), 795-822.
- Michelot F., Moret-Bailly J., Expressions algébriques
approchées de symboles de couplage et de fonctions de base
adaptés à la symétrie cubique, J. Phys. (Paris)
36 (1975), 451-460.
- Champion J.P., Pierre G., Michelot F., Moret-Bailly J.,
Composantes cubiques normales des tenseurs sphériques, Can.
J. Phys. 55 (1977), 512-520.
- Patera J., Winternitz P., A new basis for the representations of
the rotation group. Lamé and Heun polynomials, J. Math.
Phys. 14 (1973), 1130-1139.
- Patera J., Winternitz P., On bases for irreducible representations
of O(3) suitable for systems with an arbitrary finite symmetry
group, J. Chem. Phys. 65 (1976), 2725-2731.
- Michel L., Invariants polynomiaux des groupes de symétrie
moléculaire et cristallographique, in Group Theoretical Methods
in Physics, Editors R.T. Sharp and B. Kolman, Academic Press, New
York, 1977, 75-91.
- Kibler M.R., Planat M., A SU(2) recipe for mutually unbiased
bases, Internat. J. Modern Phys. B 20 (2006),
1802-1807,
quant-ph/0601092.
- Arik M., Coon D.D., Hilbert spaces of analytic functions and
generalized coherent states, J. Math. Phys. 17 (1976),
524-527.
- Biedenharn L.C., The quantum group SUq(2) and a q-analogue of
the boson operators, J. Phys. A: Math. Gen. 22 (1989),
L873-L878.
- Sun C.-P., Fu H.-C., The q-deformed boson realisation of the
quantum group SU(n)q and its representations, J. Phys.
A: Math. Gen. 22 (1989), L983-L986.
- Macfarlane A.J., On q-analogues of the quantum harmonic
oscillator and the quantum group SU(2)q, J. Phys. A: Math.
Gen. 22 (1989), 4581-4588.
- Daoud M., Kibler M., Fractional supersymmetric quantum mechanics
as a set of replicas of ordinary supersymmetric quantum mechanics,
Phys. Lett. A 321 (2004), 147-151,
math-ph/0312019.
- Daoud M., Hassouni Y., Kibler M., The k-fermions as objects
interpolating between fermions and bosons, in Symmetries in
Science X, Editors B. Gruber and M. Ramek, Plenum Press, New York,
1998, 63-67,
quant-ph/9710016.
- Daoud M., Hassouni Y., Kibler M., Generalized supercoherent
states, Phys. Atom. Nuclei 61 (1998), 1821-1824,
quant-ph/9804046.
- Daoud M., Kibler M.R., Fractional supersymmetry and hierarchy of
shape invariant potentials, J. Math. Phys. 47 (2006),
122108, 11 pages,
quant-ph/0609017.
- Kibler M., Daoud M., Variations on a theme of quons: I. A non
standard basis for the Wigner-Racah algebra of the group SU(2),
Recent Res. Devel. Quantum Chem. 2 (2001), 91-99.
- Daoud M., Kibler M., Fractional supersymmetric quantum mechanics,
Phys. Part. Nuclei (Suppl. 1) 33 (2002), S43-S51.
- Schwinger J., On angular momentum, in Quantum Theory of Angular
Momentum, Editors L.C. Biedenharn and H. van Dam, Academic Press,
New York, 1965, 229-279.
- Lévy-Leblond J.-M., Azimuthal quantization of angular momentum,
Rev. Mex. Fís. 22 (1973), 15-23.
- Chaichian M., Ellinas D., On the polar decomposition of the
quantum SU(2) algebra, J. Phys. A: Math. Gen. 23
(1990), L291-L296.
- Ellinas D., Phase operators via group contraction, J. Math.
Phys. 32 (1991), 135-141.
- Ellinas D., Quantum phase angles and su($\infty$), J. Mod.
Opt. 38 (1991), 2393-2399.
- Ellinas D., Floratos E.G., Prime decomposition and correlation
measure of finite quantum systems, J. Phys. A: Math. Gen.
32 (1999), L63-L69,
quant-ph/9806007.
- Fairlie D.B., Fletcher P., Zachos C.K., Infinite-dimensional
algebras and a trigonometric basis for the classical Lie algebras,
J. Math. Phys. 31 (1990), 1088-1094.
- Patera J., Zassenhaus H., The Pauli matrices in n dimensions and
finest gradings of simple Lie algebras of type An-1,
J. Math. Phys. 29 (1988), 665-673.
- Weyl H., The theory of groups and quantum mechanics, Dover
Publications, New York, 1950.
- Delsarte P., Goethals J.M., Seidel J.J., Bounds for systems of
lines and Jacobi polynomials, Philips Res. Repts. 30
(1975), 91-105.
- Ivanovic I.D., Geometrical description of quantum state
determination, J. Phys. A: Math. Gen. 14 (1981),
3241-3245.
- Wootters W.K., Quantum mechanics without probability amplitudes,
Found. Phys. 16 (1986), 391-405.
- Wootters W.K., A Wigner-function formulation of finite-state
quantum mechanics, Ann. Phys. (N.Y.) 176 (1987),
1-21.
- Wootters W.K., Fields B.D., Optimal state-determination by
mutually unbiased measurements, Ann. Phys. (N.Y.) 191
(1989), 363-381.
- Gibbons K.S., Hoffman M.J., Wootters W.K., Discrete phase space
based on finite fields, Phys. Rev. A 70 (2004),
062101, 23 pages,
quant-ph/0401155.
- Wootters W.K., Picturing qubits in phase space, IBM J. Res.
Dev. 48 (2004), 99, 12 pages,
quant-ph/0306135.
- Wootters W.K., Quantum measurements and finite geometry,
Found. Phys. 36 (2006), 112-126,
quant-ph/0406032.
- Calderbank A.R., Cameron P.J., Kantor W.M., Seidel J.J., Zopf
4-Kerdock codes orthogonal spreads and extremal euclidean
line-sets, Proc. London Math. Soc. 75 (1997),
436-480.
- Edmonds A.R., Angular momentum in quantum mechanics, Princeton
University Press, Princeton, 1960.
- Racah G., Theory of complex spectra. II, Phys. Rev. 62
(1942), 438-462.
- Grenet G., Kibler M., On the operator equivalents, Phys.
Lett. A 68 (1978), 147-150.
- Kibler M., Grenet G., On the SU2 unit tensor, J. Math.
Phys. 21 (1980), 422-439.
- Berndt B.C., Evans R.J., Williams K.S., Gauss and Jacobi sums,
Wiley, New York, 1998.
- Bandyopadhyay S., Boykin P.O., Roychowdhury V., Vatan F., A new
proof for the existence of mutually unbiased bases,
Algorithmica 34 (2002), 512-528,
quant-ph/0103162.
- Lawrence J., Brukner C., Zeilinger A., Mutually unbiased
binary observable sets on N qubits, Phys. Rev. A 65
(2002), 032320, 5 pages,
quant-ph/0104012.
- Klimov A.B., Sánchez-Soto L.L., de Guise H., Multicomplementary
operators via finite Fourier transform, J. Phys. A: Math.
Gen. 38 (2005), 2747-2760,
quant-ph/0410155.
- Klimov A.B., Sánchez-Soto L.L., de Guise H., A
complementary-based approach to phase in finite-dimensional
quantum systems, J. Opt. B: Quantum Semiclass. Opt. 7
(2005), 283-287,
quant-ph/0410135.
- Romero J.L., Björk G., Klimov A.B., Sánchez-Soto L.L.,
Structure of the sets of mutually unbiased bases for N qubits,
Phys. Rev. A 72 (2005), 062310, 8 pages,
quant-ph/0508129.
- Le Bellac M., Physique quantique, EDP Sciences/CNRS Éditions,
Paris, 2003.
- Chaturvedi S., Aspects of mutually unbiased bases in
odd-prime-power dimensions, Phys. Rev. A 65 (2002),
044301, 3 pages,
quant-ph/0109003.
- Pittenger A.O., Rubin M.H., Mutually unbiased bases, generalized
spin matrices and separability, Linear Algebr. Appl.
390 (2004), 255-278,
quant-ph/0308142.
- Pittenger A.O., Rubin M.H., Wigner functions and separability for
finite systems, J. Phys. A: Math. Gen. 38 (2005),
6005-6036,
quant-ph/0501104.
- Saniga M., Planat M., Rosu H., Mutually unbiased bases and
finite projective planes, J. Opt. B: Quantum Semiclass.
Opt. 6 (2004), L19-L20,
math-ph/0403057.
- Saniga M., Planat M., Sets of mutually unbiased bases as arcs in
finite projectives planes, Chaos Solitons Fractals
26 (2005), 1267-1270,
quant-ph/0409184.
- Saniga M., Planat M., Hjelmslev geometry of mutually unbiased
bases, J. Phys. A: Math. Gen. 39 (2006), 435-440,
math-ph/0506057.
- Planat M., Rosu H., Mutually unbiased phase states, phase
uncertainties, and Gauss sums, Eur. Phys. J. D 36
(2005), 133-139.
- Planat M., Saniga M., Galois algebras of squeezed quantum phase
states, J. Opt. B: Quantum Semiclass. Opt. 7 (2005),
S484-S489.
- Saniga M., Planat M., Finite geometries in quantum theory: from
Galois (fields) to Hjelmslev (rings), Internat. J. Modern
Phys. B 20 (2006), 1885-1892.
- Vourdas A., SU(2) and SU(1,1) phase states, Phys. Rev. A
41 (1990), 1653-1661.
- Vourdas A., The angle-angular momentum quantum phase space,
J. Phys. A: Math. Gen. 29 (1996), 4275-4288.
- Vourdas A., Quantum systems with finite Hilbert space, Rep.
Prog. Phys. 67 (2004), 267-320.
- Vourdas A., Galois quantum systems, J. Phys. A: Math. Gen.
38 (2005), 8453-8471.
- Vourdas A., Galois quantum systems, irreducible polynomials and
Riemann surfaces, J. Math. Phys. 47 (2006), 092104,
15 pages.
- Klappenecker A., Rötteler M., Constructions of mutually unbiased
bases, Lect. Notes Comput. Sci. 2948 (2004), 137-144,
quant-ph/0309120.
- Klappenecker A., Rötteler M., Shparlinski I.E., Winterhof A., On
approximately symmetric informationally complete positive
operator-valued measures and related systems of quantum states,
J. Math. Phys. 46 (2005), 082104, 17 pages,
quant-ph/0503239.
- Grassl M., On SIC-POVMs and MUBs in dimension 6, in Proceedings
ERATO Conference on Quantum Information Science (EQIS 2004),
Editor J. Gruska, Tokyo, 2005, 60-61,
quant-ph/0406175.
- Durt T., If 1=2+3, then 1=2.3: Bell states, finite groups, and
mutually unbiased bases, a unifying approach, J. Phys. A:
Math. Gen. 38 (2005), 5267-5283,
quant-ph/0401046.
- Colin S., Corbett J., Durt T., Gross D., About SIC POVMs and
discrete Wigner distributions, J. Opt. B: Quantum Semiclass.
Opt. 7 (2005), S778-S785.
- Durt T., About the mean king's problem and discrete Wigner
distributions, Internat. J. Modern Phys. B 20 (2006),
1742-1760.
- Wocjan P., Beth T., New construction of mutually unbiased bases in
square dimensions, Quantum Inf. Comput. 5 (2005),
93-101,
quant-ph/0407081.
- Archer C., There is no generalization of known formulas for
mutually unbiased bases, J. Math. Phys. 46 (2005),
022106, 11 pages,
quant-ph/0312204.
- Bengtsson I., MUBs, polytopes, and finite geometries,
quant-ph/0406174.
- Bengtsson I., Ericsson Å., Mutually unbiased bases and the
complementary polytope, Open Syst. Inf. Dyn. 12
(2005), 107-120,
quant-ph/0410120.
- Bengtsson I., Bruzda W., Ericsson Å.,
Larsson J.-Å., Tadej W., Zyckowski K.,
Mubs and Hadamards of order six,
quant-ph/0610161.
- Bengtsson I., Three ways to look at mutually unbiased bases,
quant-ph/0610216.
- Boykin P.O., Sitharam M., Tiep P.H., Wocjan P., Mutually unbiased
bases and orthogonal decompositions of Lie algebras,
quant-ph/0506089.
- Hayashi A., Horibe M., Hashimoto T., Mean king's problem with
mutually unbiased bases and orthogonal Latin squares, Phys.
Rev. A 71 (2005), 052331, 4 pages,
quant-ph/0502092.
|
|