|
SIGMA 3 (2007), 077, 21 pages math.DS/0612467
https://doi.org/10.3842/SIGMA.2007.077
Global Stability of Dynamic Systems of High Order
Mohammed Benalili and Azzedine Lansari
Department of Mathematics, B.P. 119, Faculty of
Sciences, University Abou-bekr BelKaïd, Tlemcen, Algeria
Received December 18, 2006, in final form June 04, 2007; Published online July 15, 2007
Abstract
This paper deals with global asymptotic stability of
prolongations of flows induced by specific vector fields and
their prolongations. The method used is based on various estimates
of the flows.
Key words:
global stability; vector fields; prolongations of flows.
pdf (276 kb)
ps (192 kb)
tex (16 kb)
References
- Benalili M., Lansari A., Ideal of finite codimension in contact
Lie algebra, J. Lie Theory 11 (2001), 129-134.
- Benalili M., Lansari A., Une propriété des idéaux
de codimension finie en algèbre de Lie des champs de
vecteurs, J. Lie Theory 15 (2005), 13-26.
- Fenichel N., Asymptotic stability with rate conditions, Indiana
Univ. Math. J. 23 (1973/1974), 1109-1137.
- Gutierrez C., A solution to the bidimensional global asymptotic
stability conjecture, Ann. Inst. H. Poincaré Anal. Non
Linéaire 12 (1995), 627-671.
- Hahn W., Stability of motions, Springer-Verlag, New York, 1967.
- Libre J., Teixeria M., Global asymptotic stability for a class
of discontinuous vector fields in R2, Dyn.
Syst. 122 (2007), 133-146.
- Shafer D.S., Structure and stability of gradient polynomial
vector fields, J. London Math. Soc. (2) 41 (1990),
109-121.
- Meisters G.H., Global stability of dynamical systems,
SIAM Rev. 31 (1989), 147-151.
- Zajtz A., Global version of a Sternberg linearization theorem,
Roczik Nauk. Dydact. Prace Mat. (2000), no. 17, 265-269.
- Zajtz A., Some division theorems for vector fields, Ann.
Polon. Math. 58 (1993), 19-28.
|
|