|
SIGMA 3 (2007), 087, 13 pages arXiv:0707.3341
https://doi.org/10.3842/SIGMA.2007.087
Contribution to the Proceedings of the Seventh International Conference Symmetry in Nonlinear Mathematical Physics
Quantum Information from Graviton-Matter Gas
Lukasz-Andrzej Glinka
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980
Dubna, Moscow Region, Russia
Received May 16, 2007, in final form August 27, 2007; Published online September 04, 2007
Abstract
We present basics of conceptually new-type way for
explaining of the origin, evolution and current physical
properties of our Universe from the graviton-matter gas viewpoint.
Quantization method for the Friedmann-Lemaitre Universe based
on the canonical Hamilton equations of motion is proposed and
quantum information theory way to physics of the Universe is
showed. The current contribution from the graviton-matter gas
temperature in quintessence approximation is discussed.
Key words:
quantum cosmology; Friedmann Universe; nonequilibrium thermodynamics; quantum information in cosmology.
pdf (276 kb)
ps (231 kb)
tex (120 kb)
References
- Mukhanov V., Physical foundations of cosmology, Cambridge University Press, Cambridge, 2005.
- Bojowald M., Universe scenarios from loop quantum cosmology, Ann. Phys. 15 (2006), 326-341, astro-ph/0511557.
- Glinka L.A., Pervushin V.N., Hamiltonian unification of general relativity and standard model, Concepts Phys., submitted, arXiv:0705.0655.
- Glinka L.A., Pervushin V.N., Higgs particle mass in cosmology, talk on the Tenth European Meeting: From the Planck Scale to the Electroweak Scale, http://www.fuw.edu.pl/~susy/Planck07.html.
- Zakharov A.F., Zakharova A.A., Pervushin V.N., Conformal cosmological model test with distant SNIa data,
astro-ph/0611657.
- Dirac P.A.M., Fixation of coordinates in the Hamiltonian theory of gravitation, Phys. Rev. 114 (1959), 924-930.
Dirac P.A.M., The theory of gravitation in Hamiltonian form, Proc. Roy. Soc. Lond. A 246 (1958), 333-343.
Dirac P.A.M., Generalized Hamiltonian dynamics, Proc. Roy. Soc. Lond. A 246 (1958), 326-332.
Dirac P.A.M., Generalized Hamiltonian dynamics, Can. J.
Math. 2 (1950), 129-148.
- Einstein A., The meaning of relativity, Pricenton University Press, Princeton 1922.
Einstein A., A generalized theory of gravitation, Rev. Mod. Phys. 20 (1948), 35-39.
- Friedmann A.A., Über die Krümmung des Raumes, Z. Phys. 10 (1922), 377-386.
Friedmann A.A., Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes, Z. Phys. 21 (1924), 326-332.
- Lemaître G.-H., l'Univers en expansion, Annales Soc. Sci. Brux. A 53 (1933), 51-85.
- Zelmanov A.L., Orthometric form of monad formalism and its relations to chronometric invariants and kinemetric invariants, Doklady Acad. Nauk USSR 227 (1976), no. 1, 78-81.
- Barbashov B.M., Pervushin V.N., Zakharov A.F., Zinchuk V.A., Hamiltonian cosmological perturbation theory,
Phys. Lett. B 633 (2006), 458-462,
hep-th/0501242.
- Hilbert D., Die Grundlagen der Physik, Gott. Nachr., 27 (1915), 395-407.
- Misner Ch.W., Thorne K.S., Wheeler J.A., Gravitation, Freeman and Company, San Francisco, 1973.
- Weinberg S., Gravitation and cosmology. Principles and applications of the general theory of relativity, John Wiley & Sons, New York, 1972.
- Kolb E.W., Turner M.S., The early Universe, Addison-Wesley Publishing Company, 1988.
- Wheeler J.A., Superspace and the nature of quantum geometrodynamics, in Battelle Rencontres: 1967 Lectures in Mathematics and Physics, Editors C.M. DeWitt and J.A. Wheeler, New York, 1968, 242-307.
- DeWitt B.S., Quantum theory of gravity. I. The canonical theory, Phys. Rev. 160 (1967), 1113-1148.
- Peskin M.E., Schröder D.V., Introduction to quantum field theory, Addison-Wesley, 1995.
- Bogoliubov N.N., Logunov A.A., Oksak A.I., Todorov I.T., General principles of quantum field theory, Fizmatlit, Moscow, 2006 (in Russian).
- Bialynicki-Birula I., Bialynicka-Birula Z., Quantum electrodynamics, Pergamon, Oxford, 1975.
- Pervushin V.N., Zinchuk V.A., Bogoliubov's integrals of motion in quantum cosmology and gravity, Phys. At. Nucl. 70, (2007), 593-600.
- Blaizot J.-P., Ripka G., Quantum theory of finite systems, Massachusetts Institute of Technology Press, 1986.
- Breuer H.-P., Petruccione F., The theory of open quantum systems, Oxford University Press, Oxford, 2002.
- Zubarev D.N., Morozov V.G., Röpke G., Statistical mechanics of nonequilibrium processes, Fizmatlit, Moscow, 2002 (in Russian).
- Alber G., Beth T., Horodecki M., Horodecki P., Horodecki R., Rötteler M., Weinfurter H., Werner R., Zeilinger A., Quantum information. An introduction to basic theoretical concepts and experiments, Springer-Verlag, Berlin - Heidelberg, 2001.
|
|