|
SIGMA 3 (2007), 088, 10 pages arXiv:0709.1198
https://doi.org/10.3842/SIGMA.2007.088
Contribution to the Proceedings of the 3-rd Microconference Analytic and Algebraic Methods III
Complex Projection of Quasianti-Hermitian Quaternionic Hamiltonian Dynamics
Giuseppe Scolarici
Dipartimento di Fisica dell'Università del Salento,
and INFN, Sezione di Lecce, I-73100 Lecce, Italy
Received July 05, 2007, in final form September 03, 2007; Published online September 08, 2007
Abstract
We characterize the subclass of quasianti-Hermitian
quaternionic Hamiltonian dynamics such that their complex
projections are one-parameter semigroup dynamics in the space of
complex quasi-Hermitian density matrices. As an example, the
complex projection of a spin-½ system in a constant
quasianti-Hermitian quaternionic potential is considered.
Key words:
pseudo-Hermitian Hamiltonians; quaternions.
pdf (203 kb)
ps (144 kb)
tex (12 kb)
References
- Birkhoff G., von Neumann J., The logic of quantum mechanics,
Ann. Math. 37 (1936), 823-843.
- Finkelstein D., Jauch J.M., Schiminovich S., Speiser D.,
Foundations of quaternion quantum mechanics, J. Math. Phys. 3 (1962), 207-220.
Finkelstein D., Jauch J.M., Schiminovich S., Speiser D.,
Principle of general Q-covariance, J. Math. Phys. 4 (1963),
788-796.
Finkelstein D., Jauch J.M., Speiser D., Quaternionic
representations of compact groups, J. Math. Phys.
4 (1963), 136-140.
- Adler S.L., Quaternionic quantum mechanics and quantum
fields, Oxford University Press, New York, 1995.
- Kossakowski A., Remarks on positive maps of
finite-dimensional simple Jordan algebras, Rep. Math.
Phys. 46 (2000), 393-397.
- Scolarici G., Solombrino L., Complex entanglement and
quaternionic separability, in The Foundations of Quantum
Mechanics: Historical Analysis and Open Questions (Cesena, 2004),
Editors C. Garola, A. Rossi and S. Sozzo, World Scientific,
Singapore, 2006, 301-310.
- Asorey M., Scolarici G., Complex positive maps and
quaternionic unitary evolution, J. Phys. A: Math. Gen.
39 (2006), 9727-9741.
- Asorey M., Scolarici G., Solombrino L., Complex
projections of completely positive quaternionic maps,
Theoret. and Math. Phys. 151 (2007), 735-743.
- Asorey M., Scolarici G., Solombrino L., The complex
projection of unitary dynamics of quaternionic pure states,
Phys. Rev. A 76 (2007), 012111-012117.
- Proceedings of the Ist, IInd, IIIrd, IVth and Vth
International Workshops on "Pseudo-Hermitian Hamiltonians in
Quantum Physics" in Czech. J. Phys. 54 (2004),
no. 1, no. 10, Czech. J. Phys. 55 (2005),
no. 9, J. Phys. A: Math. Gen. 39 (2006),
no. 32, and Czech. J. Phys. 56 (2006), no. 9,
respectively.
- Scolarici G., Pseudoanti-Hermitian operators in quaternionic
quantum mechanics, J. Phys. A: Math. Gen. 35
(2002), 7493-7505.
- Blasi A., Scolarici G., Solombrino L., Alternative
descriptions in quaternionic quantum mechanics, J. Math.
Phys. 46 (2005), 42104-42111,
quant-ph/0407158.
- Scolarici G., Solombrino L., Time evolution of
non-Hermitian quantum systems and generalized master equations,
Czech. J. Phys. 56 (2006), 935-941.
- Mostafazadeh A., Batal A., Physical aspects of
pseudo-Hermitian and PT-symmetric quantum mechanics, J.
Phys. A: Math. Gen. 37 (2004), 11645-11680,
quant-ph/0408132.
- Mostafazadeh A., Time-dependent pseudo-Hermitian
Hamiltonians defining a unitary quantum system and uniqueness of
the metric operator, Phys. Lett. B 650 (2007),
208-212, arXiv:0706.1872.
- Zhang F., Quaternions and matrices of quaternions, Linenar Algebra Appl. 251 (1997), 21-57.
- Sholtz F.G., Geyer H.B., Hahne F.J.W.,
Quasi-Hermitian operators in quantum mechanics and the variational
principle, Ann. Phys. 213 (1992), 74-101.
- Blasi A., Scolarici G., Solombrino L.,
Pseudo-Hermitian Hamiltonians, indefinite inner product spaces
and their symmetries, J. Phys. A: Math. Gen. 37
(2004), 4335-4351,
quant-ph/0310106.
- Mostafazadeh A., Exact PT-symmetry is equivalent to
Hermiticity, J. Phys. A: Math. Gen. 36 (2003),
7081-7092,
quant-ph/0304080.
- Gorini V., Kossakowski A., Sudarshan E.C.G.,
Completely positive dynamical semigroups and N-level systems,
J. Math. Phys. 17 (1976), 821-825.
- Lindblad G., On the generators of quantum dynamical
semigroups, Comm. Math. Phys. 48 (1976),
119-130.
|
|