|
SIGMA 3 (2007), 090, 31 pages arXiv:0709.2471
https://doi.org/10.3842/SIGMA.2007.090
Contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson
Q-Curvature, Spectral Invariants, and Representation Theory
Thomas P. Branson
Deceased
Received August 01, 2007 from Xingwang Xu; Published online September 16, 2007
Abstract
We give an introductory account of functional determinants of
elliptic operators on manifolds and Polyakov-type formulas for
their infinitesimal and finite conformal variations.
We relate this to extremal problems and to the Q-curvature on
even-dimensional conformal manifolds.
The exposition is self-contained, in the sense of giving references
sufficient to allow the reader to work through all details.
Key words:
conformal differential geometry; functional determinant; conformal index.
pdf (387 kb)
ps (265 kb)
tex (35 kb)
References
- Aubin T., Équations differentielles non linéares
et problème de Yamabe concernant la courbure scalaire, J. Math. Pures
Appl. (9) 55 (1976), 269-296.
- Avramidi I.G., A covariant technique for the
calculation of the one-loop effective action, Nuclear Phys. B
355 (1991), 712-754, Errata, Nuclear Phys. B 509 (1998), 557-558.
- Avramidi I.G., Branson T.,
Heat kernel asymptotics of operators with
non-Laplace principal part, Rev. Math. Phys.
13 (2001), 847-890, math-ph/9905001.
- Avramidi I.G., Branson T.,
A discrete leading symbol and spectral asymptotics
for natural differential operators,
J. Funct. Anal.
190 (2002), 292-337, hep-th/0109181.
- Beckner W., Sharp Sobolev inequalities on the
sphere and the Moser-Trudinger inequality, Ann. of Math. (2)
138 (1993), 213-242.
- Branson T.,
Differential operators canonically associated
to a conformal structure, Math. Scand.
57 (1985), 293-345.
- Branson T., Group representations arising from
Lorentz conformal geometry, J. Funct. Anal. 74 (1987),
199-291.
- Branson T.,
The functional determinant,
Lecture Note Series, Vol. 4,
Global Analysis Research Center, Seoul National University, 1993.
- Branson T., Sharp inequalities, the functional
determinant, and the complementary series, Trans. Amer. Math. Soc.
347 (1995), 3671-3742.
- Branson T., An anomaly associated to 4-dimensional
quantum gravity, Comm. Math. Phys. 178 (1996), 301-309.
- Branson T., Stein-Weiss operators and ellipticity,
J. Funct. Anal. 151 (1997), 334-383.
- Branson T.,
Chang S.-Y.A., Yang P., Estimates and extremals
for zeta function determinants on four-manifolds, Comm. Math. Phys.
149 (1992), 241-262.
- Branson T., Gilkey P., The asymptotics of the
Laplacian on a manifold with boundary, Comm. Partial Differential Equations
15 (1990), 245-272.
- Branson T., Gilkey P., Pohjanpelto J., Invariants of
conformally flat manifolds, Trans. Amer. Math. Soc.
347 (1995), 939-954.
- Branson T., Ørsted B., Conformal indices of
Riemannian manifolds, Compos. Math. 60 (1986), 261-293.
- Branson T., Ørsted B.,
Explicit functional determinants
in four dimensions, Proc. Amer. Math. Soc. 113 (1991), 669-682.
- Branson T., Peterson L.J., in preparation.
- Browder F.E., Families of linear operators
depending on a parameter, Amer. J. Math. 87 (1965), 752-758.
- Carlen E., Loss M., Competing symmetries,
the logarithmic HLS inequality and Onofri's inequality on Sn,
Geom. Funct. Anal. 2 (1992), 90-104.
- Dowker J.S., Kennedy G., Finite
temperature and boundary effects in static space-times, J. Phys. A: Math. Gen. 11 (1978), 895-920.
- Eastwood M., Singer M.,
A conformally invariant
Maxwell gauge, Phys. Lett. A 107 (1985), 73-74.
- Eastwood M., Slovák J., Semiholonomic
Verma modules, J. Algebra 197 (1997), 424-448.
- Gilkey P., Invariance theory, the heat equation,
and the Atiyah-Singer index theorem, CRC Press, Boca Raton, 1995.
- Graham C.R., Conformally invariant powers of the
Laplacian, II. Nonexistence,
J. London Math. Soc. (2) 46 (1992), 566-576.
- Graham C.R., Jenne R., Mason L., Sparling G.,
Conformally invariant powers of the Laplacian, I. Existence,
J. London Math. Soc. (2) 46 (1992), 557-565.
- Knapp A., Stein E., Intertwining operators for
semisimple Lie groups. II, Invent. Math. 60 (1980), 9-84.
- Onofri E.,
On the positivity of the effective
action in a theory of random surfaces, Comm. Math. Phys. 86
(1982), 321-326.
- Palais R.S.,
Foundations of global non-linear analysis, Benjamin & Co., New York,
1968.
- Paneitz S.,
A quartic conformally
covariant differential operator for arbitrary pseudo-Riemannian
manifolds, Preprint, 1983.
- Parker T., Rosenberg S., Invariants of
conformal Laplacians, J. Differential Geom. 25 (1987), 199-222.
- Penrose R., Rindler W.,
Spinors and space-time, Vol. I, Cambridge University Press, 1984.
- Riegert R., A non-local action for the trace
anomaly, Phys. Lett. B 134 (1984), 56-60.
- Schimming R., Lineare Differentialoperatoren
zweiter Ordnung mit metrischem Hauptteil und die Methode der
Koinzidenzwerte in der Riemannschen Geometrie, Beitr. z. Analysis
15 (1981), 77-91.
- Schoen R., Conformal deformation of a
Riemannian metric to constant scalar curvature, J. Differential
Geom. 20 (1984), 479-495.
- Seeley R., Complex powers of an
elliptic operator, Proc. Symposia Pure Math. 10 (1967),
288-307.
- Trudinger N., Remarks concerning the conformal
deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa (3) 3 (1968), 265-274.
- Weyl H., The classical groups: their
invariants and representations, Princeton University Press,
1939.
- Widom H., Szegö's theorem and a complete symbolic calculus for
pseudodifferential operators, in Seminar on Singularities,
Editor L. Hörmander, Ann. of Math. Stud. 91 (1979), 261-283.
- Wünsch V.,
On conformally invariant differential operators,
Math. Nachr. 129 (1986), 269-281.
- Yamabe H., On a deformation of Riemannian
structures on compact manifolds, Osaka J. Math. 12
(1960), 21-37.
|
|