|
SIGMA 3 (2007), 093, 11 pages arXiv:0708.4209
https://doi.org/10.3842/SIGMA.2007.093
Contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson
Heat Trace Asymptotics on Noncommutative Spaces
Dmitri V. Vassilevich a, b
a) Instituto de Física, Universidade de São Paulo,
Caixa Postal 66318 CEP 05315-970, São Paulo, S.P., Brazil
b) V.A. Fock Institute of Physics, St. Petersburg University, Russia
Received August 30, 2007; Published online September 25, 2007
Abstract
This is a mini-review of the heat kernel expansion for
generalized Laplacians on various noncommutative spaces. Applications to the
spectral action principle, renormalization of noncommutative theories and
anomalies are also considered.
Key words:
heat trace asymptotics; noncommutative field theory.
pdf (258 kb)
ps (171 kb)
tex (17 kb)
References
- Alvarez-Gaume L., Della Pietra S., Moore G.W.,
Anomalies and odd dimensions,
Annals Phys. 163 (1985), 288-317.
- Avramidi I.G.,
Dirac operator in matrix geometry,
Int. J. Geom. Methods Mod. Phys. 2 (2005), 227-264,
math-ph/0502001.
- Avramidi I., Branson T.,
Heat kernel asymptotics of operators with nonLaplace principal part,
Rev. Math. Phys. 13 (2001), 847-890, math-ph/9905001.
- Barvinsky A.O., Vilkovisky G.A.,
Covariant perturbation theory. 2. Second order in the curvature. General
algorithms,
Nuclear Phys. B 333 (1990), 471-511.
- Branson T.P., Gilkey P.B.,
The asymptotics of the Laplacian on a manifold with boundary,
Comm. Partial Differential Equations 15 (1990), 245-272.
- Branson T.P., Gilkey P.B., Vassilevich D.V.,
The asymptotics of the Laplacian on a manifold with boundary. 2,
Boll. Union. Mat. Ital. 11B (1997), 39-67,
hep-th/9504029.
- Branson T.P., Gilkey P.B., Kirsten K., Vassilevich D.V.,
Heat kernel asymptotics with mixed boundary conditions,
Nuclear Phys. B 563 (1999), 603-626,
hep-th/9906144.
- Chamseddine A.H., Connes A.,
The spectral action principle,
Comm. Math. Phys. 186 (1997), 731-750,
hep-th/9606001.
- Chamseddine A.H., Connes A.,
A dress for SM the beggar,
arXiv:0706.3690.
- Chu C.S.,
Induced Chern-Simons and WZW action in noncommutative spacetime,
Nuclear Phys. B 580 (2000), 352-362,
hep-th/0003007.
- Connes A., C*-algèbres et géométrie différentielle,
C.R. Acad. Sci. Paris 290 (1980), 599-604.
- Connes A., Noncommutative geometry, Academic Press, London and San
Diego, 1994.
- Connes A., Landi G., Noncommutative manifolds, the instanton
algebra and isospectral deformations, Comm. Math. Phys.
221 (2001), 141-159, math.QA/0011194.
- Connes A., Dubois-Violette M., Noncommutative
finite-dimensional manifolds. I. Spherical manifolds and related
examples, Comm. Math. Phys. 230 (2002), 539-579, math.QA/0107070.
- Deser S., Griguolo L., Seminara D.,
Gauge invariance, finite temperature and parity anomaly in D = 3,
Phys. Rev. Lett. 79 (1997), 1976-1979,
hep-th/9705052.
- Dowker J.S., Critchley R.,
Effective Lagrangian and energy momentum tensor in de Sitter space,
Phys. Rev. D 13 (1976), 3224-3232.
- Essouabri D., Iochum B., Levy C., Sitarz A.,
Spectral action on noncommutative torus,
arXiv:0704.0564.
- Gayral V.,
Heat-kernel approach to UV/IR mixing on isospectral deformation
manifolds,
Ann. Henri Poincaré 6 (2005), 991-1023,
hep-th/0412233.
- Gayral V., Gracia-Bondia J.M., Ruiz F.R.,
Trouble with space-like noncommutative field theory,
Phys. Lett. B 610 (2005), 141-146,
hep-th/0412235.
- Gayral V., Gracia-Bondia J.M., Ruiz F.R.,
Position-dependent noncommutative products: classical construction and
field theory,
Nuclear Phys. B 727 (2005), 513-536,
hep-th/0504022.
- Gayral V., Iochum B.,
The spectral action for Moyal plane,
J. Math. Phys. 46 (2005), 043503, 17 pages, hep-th/0402147.
- Gayral V., Iochum B., Varilly J.C.,
Dixmier traces on noncompact isospectral deformations,
J. Funct. Anal. 237 (2006), 507-539,
hep-th/0507206.
- Gayral V., Iochum B., Vassilevich D.V.,
Heat kernel and number theory on NC-torus,
Comm. Math. Phys. 273 (2007), 415-443,
hep-th/0607078.
- Gilkey P.B., Invariance theory, the heat equation, and the
Atiyah-Singer index theorem, CRC Press, Boca Raton, FL, 1995.
- Gilkey P.B., Asymptotic formulae in spectral geometry, Chapman &
Hall/CRC, Boca Raton, FL, 2004.
- Grandi N.E., Silva G.A.,
Chern-Simons action in noncommutative space,
Phys. Lett. B 507 (2001), 345-350,
hep-th/0010113.
- Grosse H., Wohlgenannt M.,
Noncommutative QFT and renormalization,
J. Phys. Conf. Ser. 53 (2006), 764-792,
hep-th/0607208.
- Grosse H., Wohlgenannt M.,
Induced gauge theory on a noncommutative space,
hep-th/0703169.
- Grosse H., Wulkenhaar R.,
Renormalisation of f4 theory on noncommutative R4 in the matrix
base,
Comm. Math. Phys. 256 (2005), 305-374,
hep-th/0401128.
- Hawking S.W.,
Zeta function regularization of path integrals in curved space-time,
Comm. Math. Phys. 55 (1977), 133-148.
- Kirsten K., The a5 heat kernel coefficient on a manifold with
boundary, Classical Quantum Gravity 15 (1998), L5-L12,
hep-th/9708081.
- Kirsten, K., Spectral functions in mathematics and physics,
Chapman & Hall/CRC, Boca Raton, FL, 2001.
- Kontsevich M.,
Deformation quantization of Poisson manifolds, I,
Lett. Math. Phys. 66 (2003), 157-216,
q-alg/9709040.
- Madore J.,
The fuzzy sphere,
Classical Quantum Gravity 9 (1992), 69-88.
- Nest R., Vogt E., Werner W.,
Spectral action and the Connes-Chamsedinne model,
Lect. Notes Phys. 596 (2002), 109-132.
- Niemi A.J.,
Topological terms induced by finite temperature and density fluctuations,
Phys. Rev. Lett. 57 (1986), 1102-1105.
- Sasakura N.,
Heat kernel coefficients for compact fuzzy spaces,
JHEP 2004 (2004), no. 12, 009, 9 pages,
hep-th/0411029.
- Sasakura, N.,
Effective local geometric quantities in fuzzy spaces from heat kernel
expansions,
JHEP 2005 (2005), no. 3, 015, 26 pages, hep-th/0502129.
- Strelchenko A.,
Heat kernel of non-minimal gauge field kinetic operators on Moyal plane,
Internat. J. Modern Phys. A 22 (2007), 181-202,
hep-th/0608134.
- Strelchenko A.V., Vassilevich D.V.,
On space-time noncommutative theories at finite temperature,
Phys. Rev. D 76 (2007), 065014, 12 pages,
arXiv:0705.4294.
- Szabo R.J.,
Symmetry, gravity and noncommutativity,
Classical Quantum Gravity 23 (2006), R199-R242,
hep-th/0606233.
- Vassilevich D.V.,
Vector fields on a disk with mixed boundary conditions,
J. Math. Phys. 36 (1995), 3174-3182,
gr-qc/9404052.
- Vassilevich D.V.,
Heat kernel expansion: user's manual,
Phys. Rep. 388 (2003), 279-360,
hep-th/0306138.
- Vassilevich D.V.,
Non-commutative heat kernel,
Lett. Math. Phys. 67 (2004), 185-194,
hep-th/0310144.
- Vassilevich D.V.,
Spectral problems from quantum field theory,
Contemp. Math. 366 (2005), 3-22,
math-ph/0403052.
- Vassilevich D.V.,
Quantum noncommutative gravity in two dimensions,
Nuclear Phys. B 715 (2005), 695-712,
hep-th/0406163.
- Vassilevich D.V.,
Heat kernel, effective action and anomalies in
noncommutative theories,
JHEP 2005 (2005), no. 8, 085, 19 pages,
hep-th/0507123.
- Vassilevich D.V.,
Induced Chern-Simons action on noncommutative torus,
Modern Phys. Lett. A 22 (2007), 1255-1263,
hep-th/0701017.
|
|