|
SIGMA 3 (2007), 097, 15 pages arXiv:0710.0519
https://doi.org/10.3842/SIGMA.2007.097
Contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson
Differential Invariants of Conformal and Projective Surfaces
Evelyne Hubert a and Peter J. Olver b
a) INRIA, 06902 Sophia Antipolis, France
b) School of Mathematics, University of Minnesota,
Minneapolis 55455, USA
Received August 15, 2007, in final form September 24, 2007; Published online October 02, 2007
Abstract
We show that, for both the conformal and projective groups, all the
differential invariants of a generic surface in three-dimensional
space can be written as combinations of the invariant derivatives of a
single differential invariant. The proof is based on the equivariant
method of moving frames.
Key words:
conformal differential geometry; projective differential geometry; differential invariants; moving frame; syzygy; differential algebra.
pdf (279 kb)
ps (189 kb)
tex (20 kb)
References
- Akivis M.A., Goldberg V.V.,
Projective differential geometry of submanifolds,
North-Holland Mathematical Library, Vol. 49,
North-Holland Publishing Co., Amsterdam, 1993.
- Akivis M.A., Goldberg V.V.,
Conformal differential geometry and its generalizations,
Pure and Applied Mathematics (New York), John Wiley & Sons Inc., New
York, 1996.
- Bailey T.N., Eastwood M.G., Graham C.R.,
Invariant theory for conformal and CR geometry,
Ann. Math. 139 (1994), 491-552.
- Boulier F., Hubert E.,
DIFFALG: description, help pages and examples of
use,
Symbolic Computation Group, University of Waterloo, Ontario, Canada,
1998,
http://www.inria.fr/cafe/Evelyne.Hubert/diffalg.
- Cartan E.,
La théorie des groupes finis et continus et la géométrie
différentielle traitées par la méthode du repère mobil,
Cahiers scientifiques, Number 18 Gauthier-Villars, Paris, 1937.
- Fels M., Olver P.J.,
Moving coframes. II. Regularization and theoretical
foundations,
Acta Appl. Math. 55 (1999), 127-208.
- Fefferman C., Graham C.R.,
Conformal invariants,
in Élie Cartan et les Mathématiques d'Aujourd'hui,
Astérisque, hors série, Soc. Math. France, Paris, 1985, 95-116.
- Fubini G., Cech E.,
Introduction à la Géométrie Projective Différentielle
des Surfaces,
Gauthier-Villars, Paris, 1931.
- Green M.L.,
The moving frame, differential invariants and rigidity theorems for
curves in homogeneous spaces,
Duke Math. J. 45 (1978), 735-779.
- Griffiths P.A.,
On Cartan's method of Lie groups as applied to uniqueness and
existence questions in differential geometry,
Duke Math. J. 41 (1974), 775-814.
- Guggenheimer H.W.,
Differential geometry,
McGraw-Hill Book Co., Inc., New York, 1963.
- Hubert E.,
Notes on triangular sets and triangulation-decomposition algorithms
II: Differential systems,
in Symbolic and Numerical
Scientific Computing, Editors F. Winkler and U. Langer, Lecture Notes in Computer Science,
no. 2630,
Springer Verlag Heidelberg, 2003, 40-87.
- Hubert E.,
DIFFALG: extension to non commuting derivations,
INRIA, Sophia Antipolis, 2005,
http://www.inria.fr/cafe/Evelyne.Hubert/diffalg.
- Hubert E.,
Differential algebra for derivations with nontrivial commutation
rules,
J. Pure Applied Algebra 200 (2005), 163-190.
- Hubert E.,
The MAPLE package AIDA - algebraic invariants
and their differential algebras,
INRIA, 2007,
http://www.inria.fr/cafe/Evelyne.Hubert/aida.
- Hubert E.,
Differential invariants of a Lie group action: syzygies on a generating set,
in preparation.
- Hubert E.,
Generation properties of Maurer-Cartan invariants,
in preparation.
- Hubert E., Kogan I.A.,
Rational invariants of a group action. Construction and rewriting,
J. Symbolic Comput. 42 (2007), 203-217.
- Hubert E., Kogan I.A.,
Smooth and algebraic invariants of a group action. Local and global
constructions,
Found. Comput. Math., in press.
- Ivey T.A., Landsberg J.M.,
Cartan for beginners: differential geometry via moving frames
and exterior differential systems, Graduate Studies in
Mathematics, Vol. 61,
American Mathematical Society, Providence, RI, 2003.
- Jensen G.,
Higher order contact of submanifolds of homogeneous spaces,
Lecture Notes in Mathematics, Vol. 610,
Springer-Verlag, Berlin - New York, 1977.
- Kogan I.A., Olver P.J.,
Invariant Euler-Lagrange equations and the invariant variational
bicomplex, Acta Appl. Math. 76 (2003), 137-193.
- Lie S.,
Vorlesungen über Continuierliche Gruppen mit Geometrischen
und anderen Anwendungen,
Chelsea Publishing Co., Bronx, New York, 1971.
- Marí Beffa G.,
The theory of differential invariants and KdV Hamiltonian evolutions,
Bull. Soc. Math. France 127 (1999), 363-391.
- Marí Beffa G.,
Relative and absolute differential invariants for conformal curves,
J. Lie Theory 13 (2003), 213-245.
- Marí Beffa G.,
Projective-type differential invariants and geometric curve evolutions of KdV-type in flat homogeneous manifolds,
Ann. Institut Fourier, to appear.
- Marí Beffa G., Olver P.J.,
Differential invariants for parametrized projective surfaces,
Comm. Anal. Geom. 7 (1999), 807-839.
- Mansfield E.L.,
Algorithms for symmetric differential systems,
Found. Comput. Math. 1 (2001), 335-383.
- Olver P.J.,
Applications of Lie groups to differential equations,
Graduate Texts in Mathematics, no. 107, Springer-Verlag, New
York, 1986.
- Olver P.J.,
Equivalence, invariants and symmetry,
Cambridge University Press, 1995.
- Olver P.J.,
Moving frames and singularities of prolonged group actions,
Selecta Math. (N.S.) 6 (2000), 41-77.
- Olver P.J.,
A survey of moving frames,
in Computer Algebra and Geometric Algebra with Applications,
Editors H. Li, P.J. Olver and G. Sommer, Lecture Notes in Computer Science, Vol. 3519, Springer-Verlag, New York, 2005, 105-138.
- Olver P.J.,
Generating differential invariants,
J. Math. Anal. Appl. 333 (2007), 450-471.
- Olver P.J.,
Differential invariants of surfaces,
Preprint, University of Minnesota, 2007.
- Ovsiannikov L.V.,
Group analysis of differential equations,
Academic Press, New York, 1982.
- Simon U.,
The Pick invariant in equiaffine differential geometry,
Abh. Math. Sem. Univ. Hamburg 53 (1983), 225-228.
- Spivak M.,
A comprehensive introduction to differential geometry, Vol. III, 2nd ed.,
Publish or Perish Inc., Wilmington, Del., 1979.
- Tresse A.,
Sur les invariants des groupes continus de transformations.
Acta Math. 18 (1894), 1-88.
- Vessiot E.,
Contribution à la géométrie conforme. Théorie des surfaces.
I,
Bull. Soc. Math. France 54 (1926), 139-179.
|
|