| 
 SIGMA 3 (2007), 097, 15 pages      arXiv:0710.0519     
https://doi.org/10.3842/SIGMA.2007.097 
Contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson 
Differential Invariants of Conformal and Projective Surfaces
Evelyne Hubert a and Peter J. Olver b
 a) INRIA, 06902 Sophia Antipolis, France
 b) School of Mathematics, University of Minnesota,
Minneapolis 55455, USA
 
 
Received August 15, 2007, in final form September 24, 2007; Published online October 02, 2007 
Abstract
 
We show that, for both the conformal and projective groups, all the
differential invariants of a generic surface in three-dimensional
space can be written as combinations of the invariant derivatives of a
single differential invariant.  The proof is based on the equivariant
method of moving frames.
  
 Key words:
conformal differential geometry; projective differential geometry; differential invariants; moving frame; syzygy; differential algebra. 
pdf (279 kb)  
ps (189 kb)  
tex (20 kb)
 
 
References
 
-  Akivis M.A., Goldberg V.V.,
Projective differential geometry of submanifolds,
  North-Holland Mathematical Library, Vol. 49,
North-Holland Publishing Co., Amsterdam, 1993.
 
- Akivis M.A., Goldberg V.V.,
Conformal differential geometry and its generalizations,
Pure and Applied Mathematics (New York), John Wiley & Sons Inc., New
  York, 1996.
 
- Bailey T.N., Eastwood M.G., Graham C.R.,
Invariant theory for conformal and CR geometry,
Ann. Math. 139 (1994), 491-552.
 
- Boulier F., Hubert E.,
 DIFFALG: description, help pages and examples of
  use,
Symbolic Computation Group, University of Waterloo, Ontario, Canada,
  1998,
 http://www.inria.fr/cafe/Evelyne.Hubert/diffalg.
 
- Cartan E.,
La théorie des groupes finis et continus et la géométrie
  différentielle traitées par la méthode du repère mobil,
Cahiers scientifiques, Number 18  Gauthier-Villars, Paris, 1937.
 
- Fels M., Olver P.J.,
Moving coframes. II. Regularization and theoretical
  foundations,
Acta Appl. Math. 55 (1999), 127-208.
 
- Fefferman C., Graham C.R.,
Conformal invariants,
in  Élie Cartan et les Mathématiques d'Aujourd'hui,
Astérisque, hors série, Soc. Math. France, Paris, 1985, 95-116.
 
- Fubini G., Cech E.,
 Introduction à la Géométrie Projective Différentielle
  des Surfaces,
Gauthier-Villars, Paris, 1931.
 
- Green M.L.,
 The moving frame, differential invariants and rigidity theorems for
  curves in homogeneous spaces,
Duke Math. J. 45 (1978), 735-779.
 
- Griffiths P.A.,
On Cartan's method of Lie groups as applied to uniqueness and
  existence questions in differential geometry,
Duke Math. J. 41 (1974), 775-814.
 
- Guggenheimer H.W.,
 Differential geometry,
McGraw-Hill Book Co., Inc., New York, 1963.
 
- Hubert E.,
Notes on triangular sets and triangulation-decomposition algorithms
II: Differential systems,
in  Symbolic and Numerical
  Scientific Computing, Editors F. Winkler and U. Langer,  Lecture Notes in Computer Science,
  no. 2630,
  Springer Verlag Heidelberg, 2003, 40-87.
 
- Hubert E.,
  DIFFALG: extension to non commuting derivations,
INRIA, Sophia Antipolis, 2005,
http://www.inria.fr/cafe/Evelyne.Hubert/diffalg.
 
- Hubert E.,
Differential algebra for derivations with nontrivial commutation
  rules,
J. Pure Applied Algebra 200 (2005), 163-190.
 
- Hubert E.,
The  MAPLE package  AIDA - algebraic invariants
  and their differential algebras,
INRIA, 2007,
http://www.inria.fr/cafe/Evelyne.Hubert/aida.
 
- Hubert E.,
Differential invariants of a Lie group action: syzygies on a generating set,
in preparation.
 
- Hubert E.,
Generation properties of Maurer-Cartan invariants,
in preparation.
 
- Hubert E., Kogan I.A.,
Rational invariants of a group action. Construction and rewriting,
J. Symbolic Comput. 42 (2007), 203-217.
 
- Hubert E., Kogan I.A.,
Smooth and algebraic invariants of a group action. Local and global
  constructions,
 Found. Comput. Math., in press.
 
- Ivey T.A., Landsberg J.M.,
Cartan for beginners: differential geometry via moving frames
  and exterior differential systems,  Graduate Studies in
  Mathematics, Vol. 61,
American Mathematical Society, Providence, RI, 2003.
 
- Jensen G.,
Higher order contact of submanifolds of homogeneous spaces,
Lecture Notes in Mathematics, Vol. 610,
 Springer-Verlag, Berlin - New York, 1977.
 
- Kogan I.A., Olver P.J.,
Invariant Euler-Lagrange equations and the invariant variational
  bicomplex, Acta Appl. Math. 76 (2003), 137-193.
 
- Lie S.,
 Vorlesungen über Continuierliche Gruppen mit Geometrischen
  und anderen Anwendungen,
Chelsea Publishing Co., Bronx, New York, 1971.
 
- Marí Beffa G.,
The theory of differential invariants and KdV Hamiltonian evolutions,
Bull. Soc. Math. France 127 (1999), 363-391.
 
- Marí Beffa G.,
Relative and absolute differential invariants for conformal curves,
J. Lie Theory 13 (2003), 213-245.
 
- Marí Beffa G.,
Projective-type differential invariants and geometric curve evolutions of KdV-type in flat homogeneous manifolds,
Ann. Institut Fourier, to appear.
 
-  Marí Beffa G., Olver P.J.,
Differential invariants for parametrized projective surfaces,
Comm. Anal. Geom. 7 (1999), 807-839.
 
- Mansfield E.L.,
Algorithms for symmetric differential systems,
Found. Comput. Math. 1 (2001), 335-383.
 
- Olver P.J.,
 Applications of Lie groups to differential equations,
Graduate Texts in Mathematics, no. 107, Springer-Verlag, New
  York, 1986.
 
- Olver P.J.,
Equivalence, invariants and symmetry,
Cambridge University Press, 1995.
 
- Olver P.J.,
Moving frames and singularities of prolonged group actions,
Selecta Math. (N.S.) 6 (2000), 41-77.
 
- Olver P.J.,
A survey of moving frames,
in Computer Algebra and Geometric Algebra with Applications,
Editors H. Li, P.J. Olver and G. Sommer, Lecture Notes in Computer Science, Vol. 3519, Springer-Verlag, New York, 2005, 105-138.
 
- Olver P.J.,
Generating differential invariants,
J. Math. Anal. Appl. 333 (2007), 450-471.
 
- Olver P.J.,
Differential invariants of surfaces,
 Preprint, University of Minnesota, 2007.
 
- Ovsiannikov L.V.,
 Group analysis of differential equations,
Academic Press, New York, 1982.
 
- Simon U.,
The Pick invariant in equiaffine differential geometry,
Abh. Math. Sem. Univ. Hamburg 53 (1983), 225-228.
 
- Spivak M.,
 A comprehensive introduction to differential geometry, Vol. III, 2nd ed.,
Publish or Perish Inc., Wilmington, Del., 1979.
 
- Tresse A.,
Sur les invariants des groupes continus de transformations.
Acta Math. 18 (1894), 1-88.
 
- Vessiot E.,
Contribution à la géométrie conforme. Théorie des surfaces.
  I,
Bull. Soc. Math. France 54 (1926), 139-179.
 
 
 | 
 |