|
SIGMA 3 (2007), 102, 14 pages math.DG/0606552
https://doi.org/10.3842/SIGMA.2007.102
Contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson
Translation to Bundle Operators
Thomas P. Branson a and Doojin Hong b
a) Deceased
b) Department of Mathematics, University of North Dakota, Grand Forks ND 58202, USA
Received August 31, 2007, in final form October 24, 2007; Published online October 31, 2007
Abstract
We give explicit formulas for conformally invariant
operators with leading term an m-th power of Laplacian on the
product of spheres with the natural pseudo-Riemannian product metric for all m.
Key words:
conformally invariant operators; pseudo-Riemannian product of shperes; Fefferman-Graham ambient space; intertwining operator of the conformal group O(p+1,q+1).
pdf (213 kb)
ps (159 kb)
tex (11 kb)
References
- Branson T.,
Group representations arising from Lorentz conformal geometry,
J. Funct. Anal. 74 (1987), 199-291.
- Branson T.,
Harmonic analysis in vector bundles associated to the rotation and spin groups,
J. Funct. Anal. 106 (1992), 314-328.
- Branson T.,
Sharp inequalities, the functional determinant, and the complementary series,
Trans. Amer. Math. Soc. 347 (1995), 3671-3742.
- Branson T.,
Nonlinear phenomena in the spectral theory of geometric linear differential operators,
Proc. Symp. Pure Math. 59 (1996), 27-65.
- Branson T., Hong D.,
Spectrum generating on twistor bundle,
math.DG/0606524.
- Fefferman C., Graham C.R.,
Conformal invariants,
Eli Cartan et les Mathématiques d'aujourd'hui
Asterisque (Societé Mathématique de France, Paris) (1996), 163-205.
- Gover A.R.,
Laplacian operators and Q-curvature on conformally Einstein manifolds,
math.DG/0506037.
- Graham C.R., Jenne R., Mason L.J., Sparling G.A.,
Conformally invariant powers of the Laplacian, I. Existence,
J. London Math. Soc. 46 (1992), 557-565.
- Hong D.,
Eigenvalues of Dirac and Rarita-Schwinger operators,
in Clifford Algebras and their Applications in Mathematical Physics,
Birkhäuser, 2000, 201-210.
- Hong D.,
Spectra of higher spin operators,
PhD Dissertation, University of Iowa, 2004.
- Hughston L.P., Hurd T.R.,
A CP5 calculus for space-time fields,
Phys. Rep. 100 (1983), 273-326.
- Ikeda A., Taniguchi Y.,
Spectra and eigenforms of the Laplacian on Sn and Pn(C),
Osaka J. Math. 15 (1978), 515-546.
- Ørsted B.,
Conformally invariant differential equations and projective geometry,
J. Funct. Anal. 44 (1981), 1-23.
|
|