Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 3 (2007), 102, 14 pages      math.DG/0606552      https://doi.org/10.3842/SIGMA.2007.102
Contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson

Translation to Bundle Operators

Thomas P. Branson a and Doojin Hong b
a) Deceased
b) Department of Mathematics, University of North Dakota, Grand Forks ND 58202, USA

Received August 31, 2007, in final form October 24, 2007; Published online October 31, 2007

Abstract
We give explicit formulas for conformally invariant operators with leading term an m-th power of Laplacian on the product of spheres with the natural pseudo-Riemannian product metric for all m.

Key words: conformally invariant operators; pseudo-Riemannian product of shperes; Fefferman-Graham ambient space; intertwining operator of the conformal group O(p+1,q+1).

pdf (213 kb)   ps (159 kb)   tex (11 kb)

References

  1. Branson T., Group representations arising from Lorentz conformal geometry, J. Funct. Anal. 74 (1987), 199-291.
  2. Branson T., Harmonic analysis in vector bundles associated to the rotation and spin groups, J. Funct. Anal. 106 (1992), 314-328.
  3. Branson T., Sharp inequalities, the functional determinant, and the complementary series, Trans. Amer. Math. Soc. 347 (1995), 3671-3742.
  4. Branson T., Nonlinear phenomena in the spectral theory of geometric linear differential operators, Proc. Symp. Pure Math. 59 (1996), 27-65.
  5. Branson T., Hong D., Spectrum generating on twistor bundle, math.DG/0606524.
  6. Fefferman C., Graham C.R., Conformal invariants, Eli Cartan et les Mathématiques d'aujourd'hui Asterisque (Societé Mathématique de France, Paris) (1996), 163-205.
  7. Gover A.R., Laplacian operators and Q-curvature on conformally Einstein manifolds, math.DG/0506037.
  8. Graham C.R., Jenne R., Mason L.J., Sparling G.A., Conformally invariant powers of the Laplacian, I. Existence, J. London Math. Soc. 46 (1992), 557-565.
  9. Hong D., Eigenvalues of Dirac and Rarita-Schwinger operators, in Clifford Algebras and their Applications in Mathematical Physics, Birkhäuser, 2000, 201-210.
  10. Hong D., Spectra of higher spin operators, PhD Dissertation, University of Iowa, 2004.
  11. Hughston L.P., Hurd T.R., A CP5 calculus for space-time fields, Phys. Rep. 100 (1983), 273-326.
  12. Ikeda A., Taniguchi Y., Spectra and eigenforms of the Laplacian on Sn and Pn(C), Osaka J. Math. 15 (1978), 515-546.
  13. Ørsted B., Conformally invariant differential equations and projective geometry, J. Funct. Anal. 44 (1981), 1-23.


Previous article   Next article   Contents of Volume 3 (2007)