|
SIGMA 3 (2007), 104, 18 pages arXiv:0711.1041
https://doi.org/10.3842/SIGMA.2007.104
Contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson
Some Conformal Invariants from the Noncommutative Residue for Manifolds with Boundary
William J. Ugalde
Escuela de Matemática, Universidad de Costa Rica, Código postal 2060 San José, Costa Rica
Received August 06, 2007, in final form October 31, 2007; Published online November 07, 2007
Abstract
We review previous work of Alain Connes, and its
extension by the author, on some conformal invariants obtained
from the noncommutative residue on even dimensional compact
manifolds without boundary. Inspired by recent work of Yong Wang,
we also address possible generalizations of these conformal
invariants to the setting of compact manifolds with boundary.
Key words:
manifolds with boundary; noncommutative residue; Fredholm module; conformal invariants.
pdf (309 kb)
ps (220 kb)
tex (22 kb)
References
- Adler M.,
On a trace functional for formal pseudodifferential operators
and the symplectic structure of the Korteweg-de Vries type
equations, Invent. Math. 50 (1979), 219-248.
- Bär C.,
Conformal structures in noncommutative geometry, J.
Noncommut. Geom. 1 (2007), 385-395,
arXiv:0704.2119.
- Boutet de Monvel L.,
Boundary problems for pseudo-differential operators, Acta
Math. 126 (1971), 11-51.
- Connes A.,
The action functional in noncommutative-geometry, Comm. Math.
Phys. 117 (1988), 673-683.
- Connes A.,
Quantized calculus and applications, in Proceedings of the XIth
International Congress of Mathematical Physics, International
Press, Cambridge, MA, 1995, 15-36.
- Connes A., Noncommutative geometry, Academic Press, London and San
Diego, 1994.
- Connes A., Sullivan D., Teleman N.,
Quasiconformal mappings, operators on Hilbert space, and local
formulae for characteristic classes, Topology 33
(1994), 663-681.
- Fedosov B.V., Golse F., Leichtnam E., Schrohe E.,
The noncommutative residue for manifolds with boundary, J.
Funct. Anal. 142 (1996), 1-31.
- Gracia-Bondía J.M., Várilly J.C., Figueroa H.,
Elements of noncommutative geometry, Birkhäuser Advanced
Texts, Birkhäuser, Boston, 2001.
- Graham R., Jenne R., Mason L., Sparling G.,
Conformally invariant powers of the Laplacian. I. Existence,
J. London Math. Soc. (2) 46 (1992), 557-565.
- Grubb G.,
Singular Green operators and their spectral asymptotics, Duke
Math. J. 51 (1984), 477-528.
- Guillemin V.W., A new proof of Weyl's formula on the asymptotic
distribution of eigenvalues, Adv. Math. 55 (1985),
131-160.
- Manin Yu.I.,
Algebraic aspects of nonlinear differential equations, J.
Sov. Math. 11 (1979), 1-22.
- Paneitz S.,
A quadratic conformally covariant differential operator for
arbitrary pseudo-Riemannian manifolds, Preprint, 1983.
- Polyakov A., Quantum geometry of bosonic strings,
Phys. Lett. B 103 (1981), 207-210.
Polyakov A., Quantum geometry of fermionic strings, Phys.
Lett. B 103 (1981), 211-213.
- Schrohe E.,
Noncommutative residue, Dixmier's traces, and heat trace
expansions on manifolds with boundary, Contemp. Math.
242 (1999), 161-186,
math.AP/9911053.
- Schrohe E.,
A short introduction to Boutet de Monvel's calculus, in Approaches
to Singular Analysis, Editors J. Gil, D. Grieser and M. Lesch,
Birkhäuser, Basel, 2001, 85-116.
- Ugalde W.J.,
Differential forms canonically associated to even-dimensional
compact conformal manifolds, in Clifford Algebras. Applications
to Mathematics, Physics, and Engineering, Editor R. Ablamowicz,
Progress in Mathematical Physics, Vol. 34, Birkhäuser,
Boston, 2004, 211-225,
math.DG/0211240.
- Ugalde W.J.,
A construction of critical GJMS operators using Wodzicki's
residue, Comm. Math. Phys. 261 (2006), 771-788,
math.DG/0403392.
- Ugalde W.J.,
Differential forms and the Wodzicki residue,
math.DG/0211361.
- Wang Y.,
Differential forms and the Wodzicki residue for manifolds with
boundary, J. Geom. Phys. 56 (2006), 731-753,
math.DG/0609062.
- Wang Y.,
Differential forms and the noncommutative residue for manifolds
with boundary in the non-product case, Lett. Math. Phys.
77 (2006), 41-51,
math.DG/0609060.
- Wodzicki M.,
Local invariants of spectral asymmetry, Invent. Math.
75 (1984), 143-178.
|
|