| 
 SIGMA 3 (2007), 106, 9 pages      arXiv:0711.2401     
https://doi.org/10.3842/SIGMA.2007.106 
Contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson 
Biorthogonal Expansion of Non-Symmetric Jack Functions
Siddhartha Sahi a and Genkai Zhang b
 a) Department of Mathematics, Rutgers University, New Brunswick, New Jersey, USA
 b) Mathematical Sciences, Chalmers University of Technology and  Mathematical Sciences, Göteborg University, Sweden
 
 
Received August 08, 2007, in final form October 31, 2007; Published online November 15, 2007 
Abstract
 
We find a biorthogonal expansion of the Cayley transform of the non-symmetric Jack
functions in terms of the non-symmetric Jack polynomials, the coefficients being Meixner-Pollaczek type polynomials. This
is done by computing the Cherednik-Opdam transform of the non-symmetric Jack polynomials multiplied
by the exponential function.
  
 Key words:
non-symmetric Jack polynomials and functions; biorthogonal expansion;  Laplace transform; Cherednik-Opdam transform. 
pdf (225 kb)  
ps (166 kb)  
tex (14 kb)
 
 
References
 
- Baker T.H., Forrester P.J., The Calogero-Sutherland model and
  generalized classical polynomials, Comm. Math. Phys. 188 (1997),
  175-216, solv-int/9608004.
 
- Baker T.H., Forrester P.J., Non-symmetric Jack polynomials and intergral kernels, Duke
  Math. J. 95 (1998), 1-50, q-alg/9612003.
 
- Davidson M., Olafsson G., Zhang G., Segal-Bargmann transform on
  Hermitian symmetric spaces, J. Funct. Anal. 204 (2003),
 157-195, math.RT/0206275.
 
- Faraut J., Koranyi A., Analysis on symmetric cones, Oxford University
  Press, Oxford, 1994.
 
- Knop F., Sahi S., A recursion and a combinatorial
  formula for Jack polynomials, Invent. Math. 128 (1997),
  9-22, q-alg/9610016.
 
- Koekoek R., Swarttouw R.F., The Askey-scheme of hypergeometric
  orthogonal polynomials and its q-analogue, Math. Report 98-17, Delft Univ. of
  Technology, 1998, math.CA/9602214.
 
- Macdonald I.G.,
Symmetric functions and Hall polynomials,
Clarendon Press, Oxford, 1995.
 
- Macdonald I.G., Hypergeometric functions, Lecture notes, unpublished.
 
- Peng L., Zhang G., Nonsymmetric Jacobi and Wilson-type polynomials,
 Int. Math. Res. Not. (2006), Art. ID. 21630, 13 pages, math.CA/0511709.
 
- Opdam E.M., Harmonic analysis for certain representations of graded
  Hecke algebras, Acta Math. 175 (1995), 75-121.
 
- Sahi S., A new scalar product for nonsymmetric Jack polynomials,
  Int. Math. Res. Not. (1996), no. 20, 997-1004, q-alg/9608013.
 
- Sahi S., The binomial formula for nonsymmetric Macdonald
  polynomials, Duke Math. J. 94 (1998), 465-477, q-alg/9703024.
 
- Sahi S.,        The spectrum of certain invariant differential operators associated to a Hermitian symmetric space,
in Lie Theory and Geometry,
Progr. Math., Vol. 123,  Birkhäuser, Boston MA, 1994, 569-576.
 
- Zhang G., Branching coefficients of holomorphic representations and
  Segal-Bargmann transform, J. Funct. Anal. 195 (2002), 306-349, math.RT/0110212.
 
- Zhang G., Spherical transform and Jacobi polynomials on root systems of
  type BC, Int. Math. Res. Not. (2005), no. 51, 3169-3190, math.RT/0503735.
 
 
 | 
 |