|
SIGMA 3 (2007), 109, 24 pages arXiv:0709.4528
https://doi.org/10.3842/SIGMA.2007.109
Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions
Mélisande Fortin Boisvert
Department of Mathematics and Statistics, McGill University, Montréal, Canada, H3A 2K6
Received October 01, 2007, in final form November 02, 2007; Published online November 21, 2007
Abstract
The main contribution of our paper is to give a partial
classification of the quasi-exactly solvable Lie algebras of first order differential
operators in three variables, and to show how this can be applied to
the construction of new quasi-exactly solvable Schrödinger operators in three
dimensions.
Key words:
quasi-exact solvability; Schrödinger operators; Lie algebras of first order differential operators; three dimensional manifolds.
pdf (668 kb)
ps (673 kb)
tex (778 kb)
References
- Amaldi U., Contributo alla determinazione dei gruppi continui
finiti dello spazio ordinario, part I, Giornale di matematiche di
Battaglini per il progresso degle studi nelle universita italiane 39 (1901), 273-316.
Amaldi U., Contributo alla determinazione dei gruppi continui
finiti dello spazio ordinario, part II, Giornale di matematiche di
Battaglini per il progresso degle studi nelle universita italiane 40 (1902), 105-141.
- Barut A.O., Böhm A., Dynamical groups and mass
formula, Phys. Rev. (2) 139 (1965), B1107-B1112.
- Böhm A., Ne'eman Y., Barut A.O. (Editors), Dynamical groups and spectrum generating algebras,
World Scientific, Singapore, 1988.
- Böhm A., Ne'eman Y., Dynamical groups and spectrum generating algebras, in Dynamical Groups and Spectrum Generating Algebras,
World Scientific, Singapore, 1988, 3-68.
- Dothan Y., Gell-Mann M., Ne'eman Y., Series of hadron energy levels as representation of non-compact
groups, Phys. Lett. 17 (1965), 148-151.
- Fortin-Boisvert M., Turbiner's conjecture in three
dimensions, J. Geom. Phys., to appear,
math.DG/0612621.
- Fulton W., Harris J., Representation theory, Springer-Verlag, 1991.
- González-López A., Hurturbise J., Kamran N., Olver P.J.,
Quantification de la cohomologie des algebres de Lie de
champs de vecteurs et fibres en droites sur des surfaces complexes
compactes, C. R. Acad. Sci. Paris Sér. I Math. 316
(1993), 1307-1312.
- González-López A., Kamran N., Olver P.J.,
Lie algebras of first order differential operators in two
complex variables, Canadian Math. Soc. Conf. Proc.,
Vol. 12, Amer. Math. Soc., Providence, R.I., 1991, 51-84.
- González-López A., Kamran N., Olver P.J., Normalizability of one-dimensional quasi-exactly solvable Schrödinger operators,
Comm. Math. Phys. 153 (1993), 118-146.
- González-López A., Kamran N., Olver P.J., New quasi-exactly solvable Hamiltonians in
two dimensions, Comm. Math. Phys. 159 (1994), 503-537.
- González-López A., Kamran N., Olver P.J., Quasi-exactly solvable Lie algebras of first order differential operators in two complex variables,
J. Phys. A: Math. Gen. 24 (1991), 3995-4008.
- González-López A., Kamran N., Olver P.J., Quasi-exact solvablility,
Contemp. Math. 160 (1994), 113-139.
- González-López A., Kamran N., Olver P.J., Real Lie algebras of differential operatord and quasi-exacly solvable potentials,
Philos. Trans. Roy. Soc. London Ser. A 354 (1996), 1165-1193.
- Goshen S., Lipkin H.J., A simple independent particle system having collective properties,
Ann. Phys. 6 (1959), 301-309.
- Gruber B., Otsuka T. (Editors), Symmetries in science VII:
spectrum-generating algebras and dynamic symmetries in physics,
Plenum Press, New York, 1993.
- Iachello F., Levine R.D., Algebraic theory of
molecules, Oxford Univ. Press, Oxford, (1995).
- Lie S., Theorie der Transformationsgruppen,
Vol. III, Chelsea Publishing Company, New York, 1970.
- Milson R., Multi-dimensional Lie algebraic
operators, Ph.D. Thesis, McGill University, 1995.
- Milson R., Representation of finite-dimensional Lie algebras by
first order differential operators. Some local results in the
transitive case, J. London Math. Soc. (2) 52 (1995), 285-302.
- Miller W. Jr., Lie theory and special functions, Academic Press, New York, 1968.
- Milson R., Richter D., Quantization of cohomology in
semi-simple Lie algebras, J. Lie Theory 8 (1998), 401-414.
- Shifman M.A., Turbiner A.V., Quantal problems with partial algebraization of the spectrum,
Comm. Math. Phys. 126 (1989), 347-365.
- Turbiner A.V., Quasi-exactly solvable problems and sl(2) algebras,
Comm. Math. Phys. 118 (1988), 467-474.
- Ushveridze A.G., Quasi-exactly solvable models in quantum mechanics,
Soviet J. Particles and Nuclei 20 (1989), 504-528.
- Ushveridze A.G., Quasi-exactly solvable models in quantum mechanics,
IOP Publ., Bristol, 1994.
|
|