|
SIGMA 3 (2007), 115, 9 pages arXiv:0712.1089
https://doi.org/10.3842/SIGMA.2007.115
Contribution to the Proceedings of the Seventh International Conference Symmetry in Nonlinear Mathematical Physics
Second-Order Approximate Symmetries of the Geodesic Equations for the Reissner-Nordström Metric and Re-Scaling of Energy of a Test Particle
Ibrar Hussain a, Fazal M. Mahomed b and Asghar Qadir a
a) Centre for Advanced Math. and Phys.,
National University of Sciences and Technology,
Campus of the College of Electr. and Mech. Eng., Peshawar Road, Rawalpindi, Pakistan
b) School of Computational and Applied Mathematics, University of the Witwatersrand,
Wits 2050, South Afric
Received August 14, 2007, in final form November 16, 2007; Published online December 07, 2007
Abstract
Following the use of approximate symmetries for the
Schwarzschild spacetime by A.H. Kara, F.M. Mahomed and A. Qadir (Nonlinear Dynam., to appear), we have investigated the exact and
approximate symmetries of the system of geodesic equations for the
Reissner-Nordström spacetime (RN). For this purpose we are forced
to use second order approximate symmetries. It is shown that in the
second-order approximation, energy must be rescaled for the RN
metric. The implications of this rescaling are discussed.
Key words:
Reissner-Nordström metric; geodesic equations; second-order approximate symmetries.
pdf (195 kb)
ps (138 kb)
tex (14 kb)
References
- Kara A.H., Mahomed F.M., Qadir A.,
Approximate symmetries and conservation laws of the geodesic
equations for the Schwarzschild metric, Nonlinear Dynam., to
appear.
- Kramer D., Stephani H., MacCullum M.A.H., Herlt E.,
Exact solutions of Einstein field equations, Cambridge University
Press, Cambridge, 1980.
- Landau L.D., Lifshitz E.M., The classical theory of fields,
Pergamon Press, 1975.
- Weber J., Wheeler J.A., Reality of the cylindrical gravitational
waves of Einstein and Rosen, Rev. Modern Phys. 29
(1957), 509-515.
- Ehlers J., Kundt W., Exact solutions of gravitational field
equations, in Gravitation: An Introductoion to Current Research,
Editor L. Witten, Wiley, New York, 1962, 49-101.
- Komar A., Asymtotic covariant conservation laws for gravitational
radiation, Phys. Rev. 127 (1962), 1411-1418.
Komar A., Positive-definite energy density and global consequences for general
relativity, Phys. Rev. 129 (1963), 1873-1876.
- Matzner R., Almost symmetric spaces and gravitational radiation,
J. Math. Phys. 9 (1968), 1657-1668.
Matzner R., 3-sphere
"backgrounds" for the space section of the Taub cosmological
solution, J. Math. Phys. 9 (1968), 1063-1067.
- Isaacson R.A., Gravitational radiation in the limit of high frequency. I.
The linear approximation and geometric potics, Phys. Rev.
166 (1968), 1263-1271.
Isaacson R.A., Gravitational radiation in the limit
of high frequency. II. Non-linear terms and the effective stress
tensor, Phys. Rev. 166 (1968), 1272-1280.
- York J.W., Covariant decomposition of symmetric tensor in the theory of
gravitation, Ann. Inst. H. Poincaré Sect. A (N.S.) 21
(1974), 319-332.
- Taub A.H., Empty spacetime admitting a three parameter groups of motions,
Ann. Math. 53 (1951), 472-490.
- Bona C., Carot J., Palenzueala-Luque C., Almost-stationary motions
and gauge conditions in general relativity, Phys. Rev. D
72 (2005), 124010, 5 pages, gr-qc/0509015.
- Spero A., Baierlein R., Approximate symmetry groups of inhomogeneous
metrics, J. Math. Phys. 18 (1977), 1330-1340.
Spero A., Baierlein R., Approximate symmetry groups of inhomogeneous metrics: examples,
J. Math. Phys. 19 (1978), 1324-1334.
- Aminova A.V., Projective transformations and symmetries of differential equations,
Sb. Math. 186 (1995), 1711-1726.
- Feroze T., Mahomed F.M., Qadir A., The connection between
isometries and symmetries of the geodesic equations of the
underlying spaces, Nonlinear Dynam. 45 (2006),
65-74.
- Baikov V., Gazizov R.K., Ibragimov N.H.,
Approximate symmetries of equations with small parameters,
Mat. Sb. 136 (1988), 435-450 (English transl.:
Math. USSR Sb. 64 (1989), 427-441).
- Ibragimov N.H., Elementary Lie group analysis and
ordinary differential equations, Wiley, Chichester, 1999.
- Noether E., Invariant variations
problems, Nachr. Konig. Gissell. Wissen., Gottingen,
Math.-Phys. Kl. 2 (1918), 235-257 (English transl.:
Transport Theory and Stat. Phys. 1 (1971), 186-207).
- Bluman G., Connections between symmetries and conservation
laws, SIGMA 1 (2005), 011, 16 pages, math-ph/0511035.
- Kara A.H., Mahomed F.M., A basis of conservation laws for partial differential
equations, J. Nonlinear Math. Phys. 9 (2002),
60-72.
- Bessel-Hagen E., Über die Erhaltungssätze der Elektrodynamik,
Math. Ann. 84 (1921), 258-276.
- Ibragimov N.H., Transformation groups applied to
mathematical physics, Reidel, Boston, 1985.
- Olver P.J., Applications of Lie groups to
differential equations, Springer-Verlag, New York, 1993.
- Bluman G., Kumei S., Symmetries and differential
equations, Springer-Verlarg, New York, 1989.
- Lie S., Sophus Lie's 1880 transformation group paper,
Math Sci. Press, Brookline MA, 1975 (translated by Michael Ackerman.
Comments by Robert Hermann).
- Stephani H., Differential equations: their solutions
using symmetry, Cambridge University Press, New York, 1989.
- Hawking S.W., Ellis G.F.R., The large scale
structure of spacetime, Cambridge University Press, Cambridge, 1973.
- Caviglia G., Dynamical symmetries: an approach to Jacobi fields
and to constants of geodesic motion, J. Math. Phys.
24 (1983), 2065-2069.
- Katzin G.H., Levine J., Geodesic first integral with explicit path-parameter
dependence in Riemannian spacetime, J. Math. Phys.
22 (1981), 1878-1891.
- Baikov V., Gazizov R.K., Ibragimov N.H., Differential equations with a small parameter: exact and approximate symmetries, in CRC
Handbook of Lie Group Analysis of Differential Equations, Vol. 3,
Editor N.H. Ibragimov, CRC Press, Boca Raton, Florida, 1996, 217-282.
- Kara A.H., Mahomed F.M., Ünal G., Approximate symmetries and conservation laws
with applications, Int. J. Theor. Phys. 38
(1999), 2389-2399.
- Gazizov R.K., Lie algebras of approximate symmetries,
J. Nonlinear Math. Phys. 3 (1996), 96-101.
- Baikov V., Gazizov R.K., Ibragimov N.H., Mahomed F.M., Closed orbits and their stable symmetries, J. Math. Phys. 35 (1994), 6525-6535.
- Fushchich W.I., Shtelen W.M., On approximate symmetry and approximate
solutions of the non-linear wave equation with a small parameter,
J. Phys. A: Math. Gen. 22 (1989), L887-L890.
- Pakdemirli M., Yürüsoy M., Dolapci I.,
Comparison of approximate symmetry methods for differential
equatons, Acta Appl Math. 80 (2004), 243-271.
- Valenti A., Approximate symmetries for a model describing dissipative
media, in Proceedings of 10th International Conference in Modern
Group Analysis (MOGRAN X) (October 24-31, 2004, Larnaca, Cyprus), Editors N.H. Ibrahimov, C. Sophocleous and P.A. Damianou, 2005, 236-243.
- Hall G.S., Symmetries and curvature structure in
general relativity, World Scientific, Singapore, 2004.
- Misner C.W., Thorne K.S., Wheele J.A., Gravitation,
W.H. Freeman and Company, San Francisco, 1973.
- Inverno D.R., Introducing Einstein's relativity,
Oxford University Press, New York, 1992.
- Qadir A., General relativity in terms of forces,
in Proceedings of Third Regional Conference on Mathematical
Physics, Editors F. Hussain and A. Qadir, World Scientific,
1990, 481-490.
- Qadir A., The gravitational force in general relativity, in M.A.B. Beg Memorial Volume, Editors
A. Ali and P. Hoodbhoy, World
Scientific, 1991, 159-178.
- Qadir A., Sharif M., The relativistic generalization of the gravitational force
for arbitary spacetimes, Nuovo Cimento B 117
(1992), 1071-1083.
- Qadir A., Zafarullah I., The pseudo-Newtonian force in time-varying
spacetimes, Nuovo Cimento B 111 (1996), 79-84.
- Qadir A., Sharif M., General formula for the momentum imparted to test particles
in arbitrary spacetimes, Phys. Lett. A 167
(1992), 331-334, gr-qc/0701098.
|
|