| 
 SIGMA 3 (2007), 117, 28 pages      arXiv:0712.1107     
https://doi.org/10.3842/SIGMA.2007.117 
Contribution to the Proceedings of the Seventh International Conference Symmetry in Nonlinear Mathematical Physics 
Self-Localized Quasi-Particle Excitation in Quantum Electrodynamics and Its Physical Interpretation
Ilya D. Feranchuk and Sergey I. Feranchuk
 Department of Physics, Belarusian University, 4 Nezavisimosti  Ave., 220030, Minsk, Belarus
 
 
Received October 21, 2007, in final form November 29, 2007; Published online December 07, 2007 
Abstract
 
The self-localized quasi-particle excitation of the
electron-positron field (EPF) is found for the first time in
the framework of a standard form of the quantum electrodynamics.
This state is interpreted as the ''physical'' electron (positron)
and it allows one to solve the following problems: i) to express
the ''primary'' charge e0 and the mass m0 of the ''bare''
electron in terms of the observed values of e and m of the
''physical'' electron without any infinite parameters and by
essentially nonperturbative way; ii) to consider μ-meson as
another self-localized EPF state   and to estimate the ratio
mμ/m; iii) to prove that the self-localized state is
Lorentz-invariant and its energy spectrum corresponds to the
relativistic free particle with the observed mass  m; iv) to
show that the expansion in a power of the observed charge e <<
1 corresponds to the strong coupling expansion in a power of the
''primary'' charge e-10  ~  e when the interaction between
the ``physical'' electron and the transverse electromagnetic
field is considered by means of the perturbation theory and all
terms of this series are free from the ultraviolet divergence.
  
 Key words:
renormalization; Dirac electron-positron vacuum; nonperturbative theory. 
pdf (404 kb)  
ps (275 kb)  
tex (97 kb)
 
 
References
 
- Weinberg S., Unified theories of elementary particle interactions, Scientific American 231 (1974), 50-58.
 
- Akhiezer A.I.,  Beresteckii V.B.,   Quantum
electrodynamics, Nauka, Moscow,   1969.
 
   Bogoliubov  N.N.,  Shirkov D.V.,   Introduction to the theory of
quantum fields, Nauka, Moscow, 1973. 
- Scharf G.,   Finite quantum electrodynamics:
the causal approach, John Wiley and Sons, Inc., USA,   2001.
 
  Scharf G.,   Quantum gauge theories: a true ghost
story, Springer Verlag, Berlin - Heidelberg - New York,  1995. 
- Dirac P.A.M.,   The principles of quantum mechanics,
The Clarendon Press, Oxford, 1958.
 
- Feynman R.P., Nobel lecture, Science
153 (1966), 699-711.
 
- Lifshitz E.M.,  Pitaevskii L.P.,   Relativistic
quantum theory. Part II, Nauka, Moscow,   1971.
 
- Janke W., Pelster A., Schmidt H.-J., Bachmann M. (Editors), Fluctuating paths and fields,
Proceedings dedicated to Hagen Kleinert, World Scientific,
Singapore,  2001.
 
- Dirac P.A.M., An extensible model of the electron, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 268 (1962), 57-67.
 
- Klevansky S.P., The Nambu-Jona-Lasinio model of quantum chromodynamics,
 Rev. Modern Phys. 64 (1992), 649-671.
 
  Gusynin V.P.,  Miransky V.A.,  Shovkovy I.A., Large N dynamics in QED in a magnetic field, Phys. Rev. D 67 (2003), 107703, 4 pages, hep-ph/0304059. 
- Hong D.K.,  Rajeev S.G., Towards a bosonization of quantum electrodynamics,
 Phys. Rev. Lett. 21 (1990), 2475-2479.
 
- Miransky V.A., Dynamics of spontaneous chiral symmetry breaking and continuous
limit in quantum electrodynamics, Nuovo Cimento A 90
(1985), 149-160.
 
- Alexandrou C., Rosenfelder R.,  Schreiber A.W., Nonperturbative mass renormalization
in quenched QED from the worldline variational approach, 
Phys. Rev. D 62 (2000),  085009, 10 pages.
 
- Pekar S.I., Autolocalization of the electron in the dielectric inertially polarized media, J. Exp. Theor. Phys.  16 (1946), 335-340.
 
- Bogoliubov N.N., About one new form of the adiabatic perturbation theory in the problem
of interaction between particle and quantum field, Uspekhi Mat. Nauk 2 (1950), 3-24.
 
Tyablikov S.V., Adiabatic form of the perturbation theory in the
problem of interaction between paricle and quantum field, 
J. Exp. Theor. Phys. 21 (1951), 377-388. 
- Dodd  R.K.,  Eilbeck J.C.,  Gibbon J.D., Moris H.C.,
Solitons and nonlinear wave equations, Academic Press, London,
1984.
 
- Fröhlich H., Electrons in lattice fields,  Adv. Phys.
3 (1954),  325-361.
 
- Heitler W.,   The quantum theory of radiation,
The Clarendon Press, Oxford,   1954.
 
- Landau  L.D.,  Lifshitz E.M.,   Quantum mechanics, Nauka, Moscow,   1963.
 
- Gross E.P., Strong coupling polaron theory and translational invariance,  Ann. Physics,
99 (1976), 1-29.
 
- Bagan E.,  Lavelle M.,  McMullan D., Charges from dressed matter:
physics and  renormalization, Ann.  Physics, 282
(2000), 503-540,
hep-ph/9909262.
 
- Yukalov V.I., Nonperturbative theory for anharmonic oscillator, Theoret. and Math. Phys.
28 (1976), 652-660.
 
   Caswell W.E., Accurate energy levels for the anharmonic oscillator and series for the double-well potential in perturbation theory, Ann. Physics  123 (1979), 153-182. 
- Feranchuk I.D.,  Komarov L.I., The operator method of the approximate solution of the
Schrödinger equation, Phys. Lett. A 88 (1982),
211-214.
 
- Feranchuk I.D.,  Komarov L.I.,  Nichipor I.V.,
 Ulyanenkov A.P., Operator method in the problem of quantum anharmonic oscillator,
 Ann. Physics 238 (1995), 370-440.
 
- Feranchuk  I.D.,  Komarov L.I.,
 Ulyanenkov A.P., Two-level system in a one-mode quantum field: numerical solution on the basis
 of the  operator method, J. Phys. A: Math. Gen. 29 (1996), 4035-4047.
 
- Feranchuk I.D.,  Komarov L.I.,
 Ulyanenkov A.P., A new method for calculation of crystal susceptibilities for x-ray diffraction
 at arbitrary wavelength, Acta Crystallogr. Sect. A 58 (2002), 370-384.
 
-  Fradkin E.S., Renormalization in quantum electrodynamics with self-consistent field,
Proc. Fiz. Inst.
of Soviet Academy of Science 29 (1965), 1-154.
 
 Fradkin E.S., Application of functional methods in quantum field theory and quantum statistics,  Nuclear Phys. 76 (1966), 588-612. 
- Bogoliubov N.N.,    Quasi-mean values in the problems
of statistical mechanics. Selected Works, Vol. 3, Naukova Dumka,
Kiev,   1971.
 
- Komarov L.I.,  Krylov E.V., Feranchuk I.D., Numerical solution of the nonlinear eigenvalue
problem,  Zh. Vychisl. Mat. Mat. Fiz. 18 (1978),
681-691.
 
- Feranchuk I.D.,  Feranchuk S.I., Self-consistent state in the strong-coupling QED,
  hep-th/0309072.
 
- Bawin M.,  Lavine J.D., On the existence of a critical charge for superheavy nucleus,
Nuovo Cimento 15 (1973), 38-44.
 
- Feranchuk I.D., Finite electron charge and mass renormalization in quantum electrodynamics,
 math-ph/0605028.
 
- Shnir Ya.M.,   Monopol,
Springer, Berlin,  2005.
 
- Brodsky S.J.,  Drell S.D., Anomalous magnetic moment and limits  on fermion substructure,
Phys. Rev. D 22 (1980), 2236-2242.
 
- Feynman R.P., Slow electrons in a polar crystal, Phys. Rev.
97 (1955), 660-665.
 
- Landau L.D., Pekar S.I., Effective mass of the polaron, J. Exp. Theor. Phys.
18 (1948), 419-423.
 
- Eides  M.I.,  Grotch  H.,  Shelyuto V.A., Theory of light hydrogenlike atoms,
Phys. Rep. 342 (2001), 63-261,
hep-ph/0002158.
 
- Bjorken J.D.,  Drell S.D.,  Relativistic quantum mechanics, McGraw-Hill Book Company, London, 1976.
 
 
 | 
 |