|
SIGMA 3 (2007), 127, 10 pages arXiv:0712.4282
https://doi.org/10.3842/SIGMA.2007.127
Contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson
On 1-Harmonic Functions
Shihshu Walter Wei
Department of Mathematics, The University of Oklahoma, Norman, Ok 73019-0315, USA
Received September 18, 2007, in final form December 17, 2007; Published online December 27, 2007
Abstract
Characterizations of entire subsolutions for the
1-harmonic equation of a constant 1-tension field are given
with applications in geometry via transformation group theory. In
particular, we prove that every level hypersurface of such a
subsolution is calibrated and hence is area-minimizing over
R; and every 7-dimensional SO(2) × SO(6)-invariant absolutely area-minimizing integral current in
R8 is real analytic. The assumption on the SO(2) × SO(6)-invariance cannot be removed, due to the first
counter-example in R8, proved by Bombieri, De
Girogi and Giusti.
Key words:
1-harmonic function; 1-tension field; absolutely area-minimizing integral current.
pdf (266 kb)
ps (204 kb)
tex (49 kb)
References
- Andreotti A., Vesentini E., Carleman estimate for the
Laplace-Beltrami equation on complex manifolds, Inst. Hautes
Études Sci. Publ. Math. 25 (1965), 81-130.
- Brothers J.E., Invariance of solutions to invariant parametric
variational problems, Trans. Amer. Math. Soc. 262 (1980), 159-179.
- Bombieri E., de
Giorgi E., Giusti E., Minimal cones and the Bernstein
problem, Invent. Math. 7 (1969), 243-268.
- Federer H., Some theorems on
integral currents, Trans. Amer. Math. Soc. 117 (1965) 43-67.
- Federer H., Geometric measure theory, Springer,
Berlin - Heidelberg - New York, 1969.
- Federer H., The singular sets of area
minimizing rectifiable currents with codimension one and of area
minimizing flat chains modulo two with arbitrary codimension,
Bull. Amer. Math. Soc. 76 (1970), 767-771.
- Federer H., Real flat chains, cochains and
variational problems, Indiana Univ. Math. J. 24 (1974), 351-406.
- Federer H., Fleming W.H., Normal and
integral currents, Ann. of Math. (2) 72 (1960), 458-520.
- Hsiang W.Y., On the compact homogeneous minimal
submanifolds, Proc. Natl. Acad. Sci. USA 56 (1966), 5-6.
- Hsiang W.Y., Lawson H.B. Jr., Minimal
submanifolds of low cohomogeneity, J. Differential Geom. 5 (1971),
1-38.
- Karp L., Subharmonic functions on real and
complex manifolds, Math. Z. 179 (1982), 535-554.
- Lawson H.B., The stable homology of a flat
torus, Math. Scand. 36 (1975), 49-73.
- Lawson H.B., The equivariant Plateau problem
and interior regularity, Trans. Amer. Math. Soc. 173 (1972), 231-249.
- Lin F.-H., Minimality and stability of
minimal hypersurfaces in RN, Bull. Austral. Math. Soc. 36
(1987), 209-214.
- Miranda M., Sul minimo dell'integrale del
gradiente di una funzione, Ann. Scuola Norm. Sup. Pisa (3) 19 (1965),
626-665.
- Miranda M., Comportamento delle
successioni convergenti di frontiere minimali, Rend. Sem. Mat. Univ. Padova 39 (1967), 238-257.
- Simoes P., A class minimal cones in Rn, n ³ 8, that minimizes area, Thesis, Berkeley, 1973.
- Simons J., Minimal varieties in
riemannian manifolds, Ann. of Math. (2) 88 (1968), 62-105.
- Wang S.P., Wei S.W., Bernstein conjecture in
hyperbolic geometry, in Seminar on Minimal Submanifolds, Editor E. Bombieri, Ann. of Math. Stud., no. 103, 1983, 339-358.
- Wei S.W., Minimality, stability, and Plateau's problem, Thesis, Berkeley,
1980.
- Wei S.W., Plateau's problem in symmetric
spaces, Nonlinear Anal. 12 (1988), 749-760.
- Yau S.T., Some function theoretic properties of complete
Riemannian manifolds and their applications to geometry, Indiana
Univ. Math. J. 25 (1976), 659-670.
|
|