|
SIGMA 4 (2008), 007, 14 pages arXiv:0801.2780
https://doi.org/10.3842/SIGMA.2008.007
Contribution to the Proceedings of the Seventh International Conference Symmetry in Nonlinear Mathematical Physics
Three Order Parameters in Quantum XZ Spin-Oscillator Models with Gibbsian Ground States
Teunis C. Dorlas a and Wolodymyr I. Skrypnik b
a) Dublin Institute for Advanced Studies, School of
Theoretical Physics, 10 Burlington Road, Dublin 4, Ireland
b) Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
Received October 29, 2007, in final form January 08, 2008; Published online January 17, 2008
Sections 1 and 2 have been rewritten, the main result and the proof have not been changed February 18, 2008.
Abstract
Quantum models on the hyper-cubic d-dimensional lattice of
spin-1/2 particles interacting with linear oscillators are
shown to have three ferromagnetic ground state order parameters. Two
order parameters coincide with the magnetization in the first and
third directions and the third one is a magnetization in a
continuous oscillator variable. The proofs use a generalized Peierls
argument and two Griffiths inequalities. The class of
spin-oscillator Hamiltonians considered manifest maximal ordering in
their ground states. The models have relevance for hydrogen-bond
ferroelectrics. The simplest of these is proven to have a unique
Gibbsian ground state.
Key words:
order parameters; spin-boson model; Gibbsian ground state.
pdf (269 kb)
ps (194 kb)
tex (18 kb)
[previous version:
pdf (285 kb)
ps (200 kb)
tex (19 kb)]
References
- Kobayashi K., Dynamical theory of the phase transition in
KH2PO4-type ferroelectric crystals, J. Phys. Soc. Japan
24 (1968), 497-508.
- Villain J., Stamenkovic S., Atomic motion in hydrogen-bond
ferroelectrics, Phys. Stat. Sol. 15 (1966), 585-596.
- Kurbatov A., Plechko V., Exactly solvable model with
order-disorder phase transition for ferroelectrics, Teoret.
Mat. Fiz. 26 (1976), 109-116.
- Bogolyubov N.N. Jr., Brankov J.G., Kurbatov A.M.,
Tonchev N.C., Zagrebnov V.A., Method of approximating Hamiltonian in
statistical physics, Sophia, 1981.
- Kirkwood J., Thomas L., Expansions and phase transitions for
the ground state of quantum Ising lattice systems,
Comm. Math. Phys. 88 (1983), 569-580.
- Matsui T., A link between quantum and classical Potts
models, J. Statist. Phys. 59 (1990), 781-798.
- Matsui T., Uniqueness of the translationally invariant
ground state in quantum spin systems, Comm. Math. Phys.
126 (1990), 453-467.
- Datta N., Kennedy T., Expansions of one quasiparticle
states in spin-1/2 systems, J. Statist. Phys. 108 (2002),
373-399, cond-mat/0104199.
- Goderis D., Maes C., Constructing quantum dissipations
and their reversible states from classical interacting spin systems,
Ann. Inst. H. Poincaré Phys. Théor. 55 (1991), 805-828.
- Dorlas T., Skrypnik W., On quantum XZ 1/2 spin models with
Gibbsian ground states, J. Phys. A: Math. Gen. 37 (2004), 66623-6632.
- Skrypnik W., Order parameters in XXZ-type spin
1/2 quantum models with Gibbsian ground states,
SIGMA 2 (2006), 011, 6 pages, math-ph/0601060.
- Skrypnik W., Quantum spin XXZ-type models with Gibbsian
ground states and double long-range order, Phys. Lett. A
371 (2007), 363-373.
- Messager A., Nachtergaele B., A model with simultaneous
first and second order phase transitions, J. Statist. Phys.
122 (2006), 1-14, cond-mat/0501229.
- van Enter A.C.D., Shlosman S.B., First-order transitions
for n-vector models in two and more dimensions; rigorous proof,
Phys. Rev. Lett. 89 (2002), 285702, 3 pages, cond-mat/0205455.
- van Enter A.C.D., Shlosman S.B., Provable first-order
transitions for liquid crystal and lattice gauge models with
continuous symmetries, Comm. Math. Phys. 255 (2005),
21-32, cond-mat/0306362.
- Thomas L.E., Quantum Heisenberg ferromagnets and stochastic
exclusion processes, J. Math. Phys. 21 (1980),
1921-1924.
- Skrypnik W., Long-range order in nonequilibrium systems of
interacting Brownian linear oscillators, J. Statist. Phys.
111 (2003), 291-321.
- Reed M., Simon B., Methods of modern mathematical physics,
Vols. II, IV, Academic Press, 1975.
- Ginibre J., Reduced density matrices of quantum gases.
I. Limit of infinite volume, J. Math. Phys. 6 (1964),
238-251.
- Kato T., Perturbation theory for linear operators,
Springer-Verlag, 1966.
- Gantmacher F.R., Matrix theory, 4th ed., Nauka, Moscow, 1988.
- Gantmacher F.R., Applications of the theory of matrices,
Interscience Publ., New York, 1959.
- Kelly D., Sherman S., Inequalities on correlations in Ising
ferromagnets, J. Math. Phys. 9 (1968),
466-483.
- Bricmont J., Fontaine J.-R., Correlation inequalities and
contour estimates, J. Statist. Phys. 26 (1981),
745-753.
- Fröhlich J., Lieb E., Phase transitions in anisotropic lattice
spin systems, Comm. Math. Phys. 60 (1978), 233-267.
- Skrypnik W., Long-range order in linear ferromagnetic
oscillator systems. Strong pair quadratic n-n potential, Ukrainian Math. J. 56 (2004),
964-972.
- Affleck I., Kennedy T., Lieb E., Tasaki H., Valence bond
ground states in isotropic quantum antiferromagnets,
Comm. Math. Phys. 115 (1988), 477-528.
- Izenman M., Translation invariance and instability of phase coexistence
in the teo dimensional Ising system, Comm. Math. Phys. 73 (1980), 84-92.
- Koma T., Tasaki H., Symmetry breaking and finite-size
effects in quantum many-body systems, J. Statist. Phys. 76 (1994), 745-803, cond-mat/9708132.
|
|